TY - JOUR
T1 - Human Milk Oligosaccharides Mediate the Crosstalk Between Intestinal Epithelial Caco-2 Cells and Lactobacillus Plantarum WCFS1 in an In Vitro Model with Intestinal Peristaltic Shear Force
AU - Kong, Chunli
AU - Cheng, Lianghui
AU - Krenning, Guido
AU - Fledderus, Jolien
AU - de Haan, Bart J
AU - Walvoort, Marthe Tc
AU - de Vos, Paul
N1 - Copyright © The Author(s) on behalf of the American Society for Nutrition 2020.
PY - 2020/8
Y1 - 2020/8
N2 - Background: The intestinal epithelial cells, food molecules, and gut microbiota are continuously exposed to intestinal peristaltic shear force. Shear force may impact the crosstalk of human milk oligosaccharides (hMOs) with commensal bacteria and intestinal epithelial cells. Objectives: We investigated how hMOs combined with intestinal peristaltic shear force impact intestinal epithelial cells and crosstalk with a commensal bacterium. Methods: We applied the Ibidi system to mimic intestinal peristaltic shear force. Caco-2 cells were exposed to a shear force (5 dynes/cm2) for 3 d, and then stimulated with the hMOs, 2'-fucosyllactose (2'-FL), 3-FL, and lacto-N-triose II (LNT2). In separate experiments, Lactobacillus plantarum WCFS1 adhesion to Caco-2 cells was studied with the same hMOs and shear force. Effects were tested on gene expression of glycocalyx-related molecules (glypican 1 [GPC1], hyaluronan synthase 1 [HAS1], HAS2, HAS3, exostosin glycosyltransferase 1 [EXT1], EXT2), defensin β-1 (DEFB1), and tight junction (tight junction protein 1 [TJP1], claudin 3 [CLDN3]) in Caco-2 cells. Protein expression of tight junctions was also quantified. Results: Shear force dramatically decreased gene expression of the main enzymes for making glycosaminoglycan side chains (HAS3 by 43.3% and EXT1 by 68.7%) (P <0.01), but did not affect GPC1 which is the gene responsible for the synthesis of glypican 1 which is a major protein backbone of glycocalyx. Expression of DEFB1, TJP1, and CLDN3 genes was decreased 60.0-94.9% by shear force (P <0.001). The presence of L. plantarum WCFS1 increased GPC1, HAS2, HAS3, and ZO-1 expression by 1.78- to 3.34-fold (P <0.05). Under shear force, all hMOs significantly stimulated DEFB1 and ZO-1, whereas only 3-FL and LNT2 enhanced L. plantarum WCFS1 adhesion by 1.85- to 1.90-fold (P <0.01). Conclusions: 3-FL and LNT2 support the crosstalk between the commensal bacterium L. plantarum WCFS1 and Caco-2 intestinal epithelial cells, and shear force can increase the modulating effects of hMOs.
AB - Background: The intestinal epithelial cells, food molecules, and gut microbiota are continuously exposed to intestinal peristaltic shear force. Shear force may impact the crosstalk of human milk oligosaccharides (hMOs) with commensal bacteria and intestinal epithelial cells. Objectives: We investigated how hMOs combined with intestinal peristaltic shear force impact intestinal epithelial cells and crosstalk with a commensal bacterium. Methods: We applied the Ibidi system to mimic intestinal peristaltic shear force. Caco-2 cells were exposed to a shear force (5 dynes/cm2) for 3 d, and then stimulated with the hMOs, 2'-fucosyllactose (2'-FL), 3-FL, and lacto-N-triose II (LNT2). In separate experiments, Lactobacillus plantarum WCFS1 adhesion to Caco-2 cells was studied with the same hMOs and shear force. Effects were tested on gene expression of glycocalyx-related molecules (glypican 1 [GPC1], hyaluronan synthase 1 [HAS1], HAS2, HAS3, exostosin glycosyltransferase 1 [EXT1], EXT2), defensin β-1 (DEFB1), and tight junction (tight junction protein 1 [TJP1], claudin 3 [CLDN3]) in Caco-2 cells. Protein expression of tight junctions was also quantified. Results: Shear force dramatically decreased gene expression of the main enzymes for making glycosaminoglycan side chains (HAS3 by 43.3% and EXT1 by 68.7%) (P <0.01), but did not affect GPC1 which is the gene responsible for the synthesis of glypican 1 which is a major protein backbone of glycocalyx. Expression of DEFB1, TJP1, and CLDN3 genes was decreased 60.0-94.9% by shear force (P <0.001). The presence of L. plantarum WCFS1 increased GPC1, HAS2, HAS3, and ZO-1 expression by 1.78- to 3.34-fold (P <0.05). Under shear force, all hMOs significantly stimulated DEFB1 and ZO-1, whereas only 3-FL and LNT2 enhanced L. plantarum WCFS1 adhesion by 1.85- to 1.90-fold (P <0.01). Conclusions: 3-FL and LNT2 support the crosstalk between the commensal bacterium L. plantarum WCFS1 and Caco-2 intestinal epithelial cells, and shear force can increase the modulating effects of hMOs.
KW - shear force
KW - human milk oligosaccharides
KW - Lactobacillus plantarum WCFS1
KW - gut barrier function
KW - intestinal epithelium
KW - GLYCOCALYX
KW - EXPRESSION
U2 - 10.1093/jn/nxaa162
DO - 10.1093/jn/nxaa162
M3 - Article
C2 - 32542361
SN - 0022-3166
VL - 150
SP - 2077
EP - 2088
JO - The Journal of Nutrition
JF - The Journal of Nutrition
IS - 8
M1 - nxaa162
ER -