Abstract
The study deals with the identification and estimation of the unknown parameters of an ‘extended’ state-vector model, in which stochastic input variables are treated as ‘state’-variables and the observed input-values as ‘output’-values of the model.
A parameter identifiability criterion, based on Fisher's information matrix, is applied to the model and a general ML-estimation procedure is given. If a certain restriction on the covariance-matrix of the state-vector is placed, the ML-procedure simplifies and coincides with an operational method, called the Lisrel procedure. This procedure provides also a test for parameter identifiability.
A parameter identifiability criterion, based on Fisher's information matrix, is applied to the model and a general ML-estimation procedure is given. If a certain restriction on the covariance-matrix of the state-vector is placed, the ML-procedure simplifies and coincides with an operational method, called the Lisrel procedure. This procedure provides also a test for parameter identifiability.
| Original language | English |
|---|---|
| Pages (from-to) | 389-391 |
| Number of pages | 3 |
| Journal | Automatica |
| Volume | 17 |
| Issue number | 2 |
| DOIs |
|
| Publication status | Published - 1981 |