Abstract
MicroRNAs (miRNAs) are instrumental to many aspects of immunity, including various levels of T-cell immunity. Over the last decade, crucial immune functions were shown to be regulated by specific miRNAs. These immuno-miRs' regulate generic cell biological processes in T cells, such as proliferation and apoptosis, as well as a number of T-cell-specific features that are fundamental to the development, differentiation and function of T cells. In this review, we give an overview of the current literature with respect to the role of miRNAs at various stages of T-cell development, maturation, differentiation, activation and ageing. Little is known about the involvement of miRNAs in thymic T-cell development, although miR-181a and miR-150 have been implicated herein. In contrast, several broadly expressed miRNAs including miR-21, miR-155 and miR-17 similar to 92, have now been shown to regulate T-cell activation. Other miRNAs, including miR-146a, show a more T-cell-subset-specific expression pattern and are involved in the regulation of processes unique to that specific T-cell subset. Importantly, differences in the miRNA target gene repertoires of different T-cell subsets allow similar miRNAs to control different T-cell-subset-specific functions. Interestingly, several of the here described immuno-miRs have also been implicated in T-cell ageing and there are clear indications for causal involvement of miRNAs in immunosenescence. It is concluded that immuno-miRs have a dynamic regulatory role in many aspects of T-cell differentiation, activation, function and ageing. An important notion when studying miRNAs in relation to T-cell biology is that specific immuno-miRs may have quite unrelated functions in closely related T-cell subsets.
Original language | English |
---|---|
Pages (from-to) | 1-10 |
Number of pages | 10 |
Journal | Immunology |
Volume | 144 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jan-2015 |
Keywords
- activation
- ageing
- differentiation
- microRNA
- T cell
- HEMATOPOIETIC STEM-CELLS
- KAPPA-B PATHWAY
- LINEAGE DIFFERENTIATION
- MICRORNA SIGNATURES
- MULTIPLE-SCLEROSIS
- GENE-EXPRESSION
- DOWN-REGULATION
- MESSENGER-RNA
- TH1 RESPONSES
- UP-REGULATION