In Situ Passivation for Efficient PbS Quantum Dot Solar Cells by Precursor Engineering

Yongjie Wang, Kunyuan Lu, Lu Han, Zeke Liu, Guozheng Shi, Honghua Fang, Si Chen, Tian Wu, Fan Yang, Mengfan Gu, Sijie Zhou, Xufeng Ling, Xun Tang, Jiawei Zheng, Maria Antonietta Loi, Wanli Ma*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

140 Citations (Scopus)
251 Downloads (Pure)

Abstract

Current efforts on lead sulfide quantum dot (PbS QD) solar cells are mostly paid to the device architecture engineering and postsynthetic surface modification, while very rare work regarding the optimization of PbS synthesis is reported. Here, PbS QDs are successfully synthesized using PbO and PbAc2 center dot 3H(2)O as the lead sources. QD solar cells based on PbAc-PbS have demonstrated a high power conversion efficiency (PCE) of 10.82% (and independently certificated values of 10.62%), which is significantly higher than the PCE of 9.39% for PbO-PbS QD based ones. For the first time, systematic investigations are carried out on the effect of lead precursor engineering on the device performance. It is revealed that acetate can act as an efficient capping ligands together with oleic acid, providing better surface coverage and replace some of the harmful hydroxyl (OH) ligands during the synthesis. Then the acetate on the surface can be exchanged by iodide and lead to desired passivation. This work demonstrates that the precursor engineering has great potential in performance improvement. It is also pointed out that the initial synthesis is an often neglected but critical stage and has abundant room for optimization to further improve the quality of the resultant QDs, leading to breakthrough efficiency.

Original languageEnglish
Article number1704871
Number of pages8
JournalAdvanced materials
Volume30
Issue number16
DOIs
Publication statusPublished - 19-Apr-2018

Keywords

  • lead sources
  • PbS quantum dots
  • solar cells
  • surface passivation
  • FIELD-EFFECT TRANSISTORS
  • CIRCUIT VOLTAGE DEFICIT
  • INFRARED PHOTODETECTORS
  • PHOTOVOLTAIC DEVICES
  • NANOCRYSTAL SOLIDS
  • TRAP PASSIVATION
  • SURFACE
  • STATES
  • FILMS
  • BEHAVIOR

Fingerprint

Dive into the research topics of 'In Situ Passivation for Efficient PbS Quantum Dot Solar Cells by Precursor Engineering'. Together they form a unique fingerprint.

Cite this