Influence of an "Electroencephalogram-Based" Monitor Choice on the Delay Between the Predicted Propofol Effect-Site Concentration and the Measured Drug Effect

Marko M Sahinovic*, Johannes P van den Berg, Pieter J Colin, Pedro L Gambus, Erik W Jensen, Mercé Agustí, Teresa Ferreiro, Michel M R F Struys

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

4 Citations (Scopus)

Abstract

BACKGROUND: Clinicians can optimize propofol titration by using 2 sources of pharmacodynamic (PD) information: the predicted effect-site concentration for propofol (Ceprop) and the electroencephalographically (EEG) measured drug effect. Relation between these sources should be time independent, that is, perfectly synchronized. In reality, various issues corrupt time independency, leading to asynchrony or, in other words, hysteresis. This asynchrony can lead to conflicting information, making effective drug dosing challenging. In this study, we tried to quantify and minimize the hysteresis between the Ceprop (calculated using the Schnider model for propofol) and EEG measured drug effect, using nonlinear mixed-effects modeling (NONMEM). Further, we measured the influence of EEG-based monitor choice, namely Bispectral index (BIS) versus qCON index (qCON) monitor, on propofol PD hysteresis.

METHODS: We analyzed the PD data from 165 patients undergoing propofol-remifentanil anesthesia for outpatient surgery. Drugs were administered using target-controlled infusion (TCI) pumps. Pumps were programmed with Schnider model for propofol and Minto model for remifentanil. We constructed 2 PD models (direct models) relating the Schnider Ceprop to the measured BIS and qCON monitor values. We quantified the models' misspecification due to hysteresis, on an individual level, using the root mean squared errors (RMSEs). Subsequently, we optimized the PD models' predictions by adding a lag term to both models (lag-time PD models) and quantified the optimization using the RMSE.

RESULTS: There is a counterclockwise hysteresis between Ceprop and BIS/qCON values. Not accounting for this hysteresis results in a direct PD model with an effect-site concentration which produces 50% of the maximal drug effect (Ce50) of 6.24 and 8.62 µg/mL and RMSE (median and interquartile range [IQR]) of 9.38 (7.92-11.23) and 8.41(7.04-10.2) for BIS and qCON, respectively. Adding a modeled lag factor of 49 seconds to the BIS model and 53 seconds to the qCON model improved both models' prediction, resulting in similar Ce50 (3.66 and 3.62 µg/mL for BIS and qCON) and lower RMSE (median (IQR) of 7.87 (6.49-9.90) and 6.56 (5.28-8.57) for BIS and qCON.

CONCLUSIONS: There is a significant "Ceprop versus EEG measured drug effect" hysteresis. Not accounting for it leads to conflicting PD information and false high Ce50 for propofol in both monitors. Adding a lag term improved the PD model performance, improved the "pump-monitor" synchrony, and made the estimates of Ce50 for propofol more realistic and less monitor dependent.

Original languageEnglish
Pages (from-to)1184-1192
Number of pages9
JournalAnesthesia and Analgesia
Volume131
Issue number4
DOIs
Publication statusPublished - Oct-2020

Cite this