Integrating molecular imaging and transcriptomic profiling in advanced HER2-positive breast cancer receiving trastuzumab emtansine (T-DM1): an analysis of the ZEPHIR clinical trial

Mattia Rediti, Danai Fimereli, Magdalena Mileva, Zéna Wimana, David Venet, Patrick Flamen, Thomas Guiot, Elisabeth G E de Vries, Carolina P Schröder, C Willemien Menke-van der Houven van Oordt, Marion Maetens, Samira Majjaj, Denis Larsimont, Françoise Rothé, Christos Sotiriou*, Géraldine Gebhart

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

PURPOSE: The ZEPHIR clinical trial evaluated the role of [89Zr]trastuzumab-PET/CT (HER2-PET/CT) and 2-[18F]fluoro-2-deoxy-D-glucose PET/CT ([18F]FDG-PET/CT) in predicting outcomes in patients with advanced HER2-positive breast cancer treated with trastuzumab emtansine (T-DM1). Here, we combined molecular/metabolic imaging and transcriptomic data to investigate the biological processes associated with [89Zr]trastuzumab and [18F]FDG uptake, and to dissect the mechanisms involved in T-DM1 resistance.

EXPERIMENTAL DESIGN: RNA was extracted from metastasis biopsies obtained in the ZEPHIR trial. HER2-PET/CT and [18F]FDG-PET/CT imaging data of biopsied lesions were integrated with transcriptomic data. Lesions were compared based on the level of [89Zr]trastuzumab uptake as well as on the presence/absence of metabolic response, defined comparing baseline and on-treatment [18F]FDG-PET/CT.

RESULTS: We analyzed matched transcriptomic and molecular/metabolic imaging data for 24 metastases. Genes and pathways involved in extracellular matrix (ECM) organization and glycosylphosphatidylinositol synthesis were enriched in lesions presenting low [89Zr]trastuzumab uptake. [18F]FDG uptake at baseline correlated with proliferation and immune-related processes. Hypoxia and ECM-related processes were enriched in lesions showing no metabolic response to T-DM1, while immune-related processes were associated with high [89Zr]trastuzumab uptake and metabolic response. Gene signatures including differentially expressed genes according to [89Zr]trastuzumab uptake and metabolic response showed predictive value in an external cohort.

CONCLUSIONS: To our knowledge, this study represents the first correlative analysis between [89Zr]trastuzumab tumor uptake and gene expression profiling in humans. Our findings suggest a role of ECM in impairing [89Zr]trastuzumab tumor uptake and T-DM1 metabolic response in advanced HER2-positive breast cancer, highlighting the potential of molecular imaging to depict tumor microenvironment features.

Original languageEnglish
Pages (from-to)110-121
Number of pages12
JournalClinical Cancer Research
Volume31
Issue number1
DOIs
Publication statusPublished - 6-Jan-2025

Fingerprint

Dive into the research topics of 'Integrating molecular imaging and transcriptomic profiling in advanced HER2-positive breast cancer receiving trastuzumab emtansine (T-DM1): an analysis of the ZEPHIR clinical trial'. Together they form a unique fingerprint.

Cite this