Interplay of weak interactions in the atom-by-atom condensation of xenon within quantum boxes

Sylwia Nowakowska, Aneliia Wäckerlin, Shigeki Kawai, Toni Ivas, Jan Nowakowski, Shadi Fatayer, Christian Wäckerlin, Thomas Nijs, Ernst Meyer, Jonas Björk, Meike Stöhr, Lutz H. Gade, Thomas A. Jung

Research output: Contribution to journalArticleAcademicpeer-review

22 Citations (Scopus)
303 Downloads (Pure)

Abstract

Condensation processes are of key importance in nature and play a fundamental role in chemistry and physics. Owing to size effects at the nanoscale, it is conceptually desired to experimentally probe the dependence of condensate structure on the number of constituents one by one. Here we present an approach to study a condensation process atom-by-atom with the scanning tunnelling microscope, which provides a direct real-space access with atomic precision to the aggregates formed in atomically defined ‘quantum boxes’. Our
analysis reveals the subtle interplay of competing directional and nondirectional interactions in the emergence of structure and provides unprecedented input for the structural comparison with quantum mechanical models. This approach focuses on—but is not limited to—the model case of xenon condensation and goes significantly beyond the well-established statistical size analysis of clusters in atomic or molecular beams by mass spectrometry.
Original languageEnglish
Article number6071 (2015)
Number of pages6
JournalNature Communications
Volume6
DOIs
Publication statusPublished - 21-Jan-2015

Cite this