KiDS-1000 Cosmology: Cosmic shear constraints and comparison between two point statistics

Marika Asgari, Chieh-An Lin, Benjamin Joachimi, Benjamin Giblin, Catherine Heymans, Hendrik Hildebrandt, Arun Kannawadi, Benjamin Stölzner, Tilman Tröster, Jan Luca van den Busch, Angus H. Wright, Maciej Bilicki, Chris Blake, Jelte de Jong, Andrej Dvornik, Thomas Erben, Fedor Getman, Henk Hoekstra, Fabian Köhlinger, Konrad KuijkenLance Miller, Mario Radovich, Peter Schneider, HuanYuan Shan, Edwin Valentijn

Research output: Contribution to journalArticleAcademicpeer-review

16 Citations (Scopus)
21 Downloads (Pure)

Abstract

We present cosmological constraints from a cosmic shear analysis of the fourth data release of the Kilo-Degree Survey (KiDS-1000), doubling the survey area with nine-band optical and near-infrared photometry with respect to previous KiDS analyses. Adopting a spatially flat $\Lambda$CDM model, we find $S_8 = \sigma_8 (\Omega_{\rm m}/0.3)^{0.5} = 0.759^{+0.024}_{-0.021}$ for our fiducial analysis, which is in $3\sigma$ tension with the prediction of the Planck Legacy analysis of the cosmic microwave background. We compare our fiducial COSEBIs (Complete Orthogonal Sets of E/B-Integrals) analysis with complementary analyses of the two-point shear correlation function and band power spectra, finding results to be in excellent agreement. We investigate the sensitivity of all three statistics to a number of measurement, astrophysical, and modelling systematics, finding our $S_8$ constraints to be robust and dominated by statistical errors. Our cosmological analysis of different divisions of the data pass the Bayesian internal consistency tests, with the exception of the second tomographic bin. As this bin encompasses low redshift galaxies, carrying insignificant levels of cosmological information, we find that our results are unchanged by the inclusion or exclusion of this sample.
Original languageEnglish
Article numberA104
Number of pages31
JournalAstronomy & astrophysics
Volume645
DOIs
Publication statusPublished - Jan-2021

Keywords

  • gravitational lensing: weak
  • methods: observational
  • cosmology: observations
  • large-scale structure of Universe
  • cosmological parameters
  • CHALLENGE LIGHTCONE SIMULATION
  • POWER SPECTRUM
  • PARAMETER CONSTRAINTS
  • DARK-MATTER
  • WEAK
  • CFHTLENS
  • KIDS-450
  • GALAXIES
  • ESTIMATORS
  • MODEL

Cite this