TY - JOUR
T1 - Kiloparsec-scale imaging of the CO(1-0)-traced cold molecular gas reservoir in a z~3.4 submillimeter galaxy
AU - Castillo, Marta Frias
AU - Rybak, Matus
AU - Hodge, Jacqueline
AU - Werf, Paul van der
AU - Riechers, Dominik A.
AU - Vieira, Daniel
AU - Rivera, Gabriela Calistro
AU - Martinez-Ramirez, Laura N.
AU - Walter, Fabian
AU - Blok, Erwin de
AU - Narayanan, Desika
AU - Wagg, Jeff
N1 - 19 pages, 12 figures, accepted for publication in ApJ
PY - 2022/3/29
Y1 - 2022/3/29
N2 - We present a high-resolution study of the cold molecular gas as traced by CO(1-0) in the unlensed z$\sim$3.4 submillimeter galaxy SMM J13120+4242, using multi-configuration observations with the Karl G. Jansky Very Large Array (JVLA). The gas reservoir, imaged on 0.39" ($\sim$3 kpc) scales, is resolved into two components separated by $\sim$11 kpc with a total extent of 16 $\sim$3 kpc. Despite the large spatial extent of the reservoir, the observations show a CO(1-0) FWHM linewidth of only 267 $\pm$ 64 km s$^{-1}$. We derive a revised line luminosity of L'$_\mathrm{CO(1-0)}$ = (10 $\pm$ 3) $\times$ 10$^{10}$ K km s$^{-1}$ pc$^2$ and a molecular gas mass of M$_\mathrm{gas}$ = (13 $\pm$ 3) $\times$ 10$^{10}$ ($\alpha_\mathrm{CO}$/1) M$_{\odot}$. Despite the presence of a velocity gradient (consistent with previous resolved CO(6-5) imaging), the CO(1-0) imaging shows evidence for significant turbulent motions which are preventing the gas from fully settling into a disk. The system likely represents a merger in an advanced stage. Although the dynamical mass is highly uncertain, we use it to place an upper limit on the CO-to-H$_2$ mass conversion factor $\alpha_\mathrm{CO}$ of 1.4. We revisit the SED fitting, finding that this galaxy lies on the very massive end of the main sequence at z = 3.4. Based on the low gas fraction, short gas depletion time and evidence for a central AGN, we propose that SMM J13120 is in a rapid transitional phase between a merger-driven starburst and an unobscured quasar. The case of SMM J13120 highlights the how mergers may drive important physical changes in galaxies without pushing them off the main sequence.
AB - We present a high-resolution study of the cold molecular gas as traced by CO(1-0) in the unlensed z$\sim$3.4 submillimeter galaxy SMM J13120+4242, using multi-configuration observations with the Karl G. Jansky Very Large Array (JVLA). The gas reservoir, imaged on 0.39" ($\sim$3 kpc) scales, is resolved into two components separated by $\sim$11 kpc with a total extent of 16 $\sim$3 kpc. Despite the large spatial extent of the reservoir, the observations show a CO(1-0) FWHM linewidth of only 267 $\pm$ 64 km s$^{-1}$. We derive a revised line luminosity of L'$_\mathrm{CO(1-0)}$ = (10 $\pm$ 3) $\times$ 10$^{10}$ K km s$^{-1}$ pc$^2$ and a molecular gas mass of M$_\mathrm{gas}$ = (13 $\pm$ 3) $\times$ 10$^{10}$ ($\alpha_\mathrm{CO}$/1) M$_{\odot}$. Despite the presence of a velocity gradient (consistent with previous resolved CO(6-5) imaging), the CO(1-0) imaging shows evidence for significant turbulent motions which are preventing the gas from fully settling into a disk. The system likely represents a merger in an advanced stage. Although the dynamical mass is highly uncertain, we use it to place an upper limit on the CO-to-H$_2$ mass conversion factor $\alpha_\mathrm{CO}$ of 1.4. We revisit the SED fitting, finding that this galaxy lies on the very massive end of the main sequence at z = 3.4. Based on the low gas fraction, short gas depletion time and evidence for a central AGN, we propose that SMM J13120 is in a rapid transitional phase between a merger-driven starburst and an unobscured quasar. The case of SMM J13120 highlights the how mergers may drive important physical changes in galaxies without pushing them off the main sequence.
KW - astro-ph.GA
U2 - 10.3847/1538-4357/ac6105
DO - 10.3847/1538-4357/ac6105
M3 - Article
SN - 0004-637X
VL - 35
JO - The Astrophysical Journal
JF - The Astrophysical Journal
M1 - 930
ER -