TY - JOUR
T1 - KRAB-Induced Heterochromatin Effectively Silences PLOD2 Gene Expression in Somatic Cells and is Resilient to TGFβ1 Activation
AU - Gjaltema, Rutger A F
AU - Goubert, Désirée
AU - Huisman, Christian
AU - Pilar García Tobilla, Consuelo Del
AU - Koncz, Mihály
AU - Jellema, Pytrick G
AU - Wu, Dandan
AU - Brouwer, Uilke
AU - Kiss, Antal
AU - Verschure, Pernette J
AU - Bank, Ruud A
AU - Rots, Marianne G
PY - 2020/5/21
Y1 - 2020/5/21
N2 - Epigenetic editing, an emerging technique used for the modulation of gene expression in mammalian cells, is a promising strategy to correct disease-related gene expression. Although epigenetic reprogramming results in sustained transcriptional modulation in several in vivo models, further studies are needed to develop this approach into a straightforward technology for effective and specific interventions. Important goals of current research efforts are understanding the context-dependency of successful epigenetic editing and finding the most effective epigenetic effector(s) for specific tasks. Here we tested whether the fibrosis- and cancer-associated PLOD2 gene can be repressed by the DNA methyltransferase M.SssI, or by the non-catalytic Krüppel associated box (KRAB) repressor directed to the PLOD2 promoter via zinc finger- or CRISPR-dCas9-mediated targeting. M.SssI fusions induced de novo DNA methylation, changed histone modifications in a context-dependent manner, and led to 50%-70% reduction in PLOD2 expression in fibrotic fibroblasts and in MDA-MB-231 cancer cells. Targeting KRAB to PLOD2 resulted in the deposition of repressive histone modifications without DNA methylation and in almost complete PLOD2 silencing. Interestingly, both long-term TGFβ1-induced, as well as unstimulated PLOD2 expression, was completely repressed by KRAB, while M.SssI only prevented the TGFβ1-induced PLOD2 expression. Targeting transiently expressed dCas9-KRAB resulted in sustained PLOD2 repression in HEK293T and MCF-7 cells. Together, these findings point to KRAB outperforming DNA methylation as a small potent targeting epigenetic effector for silencing TGFβ1-induced and uninduced PLOD2 expression.
AB - Epigenetic editing, an emerging technique used for the modulation of gene expression in mammalian cells, is a promising strategy to correct disease-related gene expression. Although epigenetic reprogramming results in sustained transcriptional modulation in several in vivo models, further studies are needed to develop this approach into a straightforward technology for effective and specific interventions. Important goals of current research efforts are understanding the context-dependency of successful epigenetic editing and finding the most effective epigenetic effector(s) for specific tasks. Here we tested whether the fibrosis- and cancer-associated PLOD2 gene can be repressed by the DNA methyltransferase M.SssI, or by the non-catalytic Krüppel associated box (KRAB) repressor directed to the PLOD2 promoter via zinc finger- or CRISPR-dCas9-mediated targeting. M.SssI fusions induced de novo DNA methylation, changed histone modifications in a context-dependent manner, and led to 50%-70% reduction in PLOD2 expression in fibrotic fibroblasts and in MDA-MB-231 cancer cells. Targeting KRAB to PLOD2 resulted in the deposition of repressive histone modifications without DNA methylation and in almost complete PLOD2 silencing. Interestingly, both long-term TGFβ1-induced, as well as unstimulated PLOD2 expression, was completely repressed by KRAB, while M.SssI only prevented the TGFβ1-induced PLOD2 expression. Targeting transiently expressed dCas9-KRAB resulted in sustained PLOD2 repression in HEK293T and MCF-7 cells. Together, these findings point to KRAB outperforming DNA methylation as a small potent targeting epigenetic effector for silencing TGFβ1-induced and uninduced PLOD2 expression.
U2 - 10.3390/ijms21103634
DO - 10.3390/ijms21103634
M3 - Article
C2 - 32455614
SN - 1422-0067
VL - 21
JO - International Journal of Molecular Sciences
JF - International Journal of Molecular Sciences
IS - 10
M1 - 3634
ER -