Label-free and sensitive fluorescent detection of sequence-specific single-strand DNA based on s1 nuclease cleavage effects

Zheng Guan, Jinchuan Liu, Wenhui Bai, Zhenzhen Lv, Xiaoling Jiang, Shuming Yang, Ailiang Chen, Guiyuan Lv

Research output: Contribution to journalArticleAcademicpeer-review

8 Citations (Scopus)
51 Downloads (Pure)

Abstract

The ability to detect sequence-specific single-strand DNA (ssDNA) in complex, contaminant-ridden samples, using a fluorescent method directly without a DNA extraction and PCR step could simplify the detection of pathogens in the field and in the clinic. Here, we have demonstrated a simple label-free sensing strategy to detect ssDNA by employing its complementary ssDNA, S1 nuclease and nucleic acid fluorescent dyes. Upon clearing away redundant complementary ssDNA and possibly mismatched double strand DNA by using S1 nuclease, the fluorescent signal-to-noise ratio could be increased dramatically. It enabled the method to be adaptable to three different types of DNA fluorescent dyes and the ability to detect target ssDNA in complex, multicomponent samples, like tissue homogenate. The method can distinguish a two-base mismatch from avian influenza A (H1N1) virus. Also, it can detect the appearance of 50 pM target ssDNA in 0.5 µg·mL-1 Lambda DNA, and 50 nM target ssDNA in 5 µg·mL-1 Lambda DNA or in tissue homogenate. It is facile and cost-effective, and could be easily extended to detect other ssDNA with many common nucleic acid fluorescent dyes.

Original languageEnglish
Article numbere108401
Number of pages6
JournalPLoS ONE
Volume9
Issue number10
DOIs
Publication statusPublished - 6-Oct-2014
Externally publishedYes

Keywords

  • GRAPHENE OXIDE
  • NANOPARTICLES
  • HYBRIDIZATION
  • ASSAY

Fingerprint

Dive into the research topics of 'Label-free and sensitive fluorescent detection of sequence-specific single-strand DNA based on s1 nuclease cleavage effects'. Together they form a unique fingerprint.

Cite this