Laser powder bed fusion of 17–4 PH stainless steel: A comparative study on the effect of heat treatment on the microstructure evolution and mechanical properties

S. Sabooni, A. Chabok, S. C. Feng, H. Blaauw, T. C. Pijper, H. J. Yang, Y. T. Pei*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

35 Citations (Scopus)
66 Downloads (Pure)


17–4 PH (precipitation hardening) stainless steel is commonly used for the fabrication of complicated molds with conformal cooling channels using laser powder bed fusion process (L-PBF). However, their microstructure in the as-printed condition varies notably with the chemical composition of the feedstock powder, resulting in different age-hardening behavior. In the present investigation, 17–4 PH stainless steel components were fabricated by L-PBF from two different feedstock powders, and subsequently subjected to different combinations of post-process heat treatments. It was observed that the microstructure in as-printed conditions could be almost fully martensitic or ferritic, depending on the ratio of Creq/Nieq of the feedstock powder. Aging treatment at 480 °C improved the yield and ultimate tensile strengths of the as-printed components. However, specimens with martensitic structures exhibited accelerated age-hardening response compared with the ferritic specimens due to the higher lattice distortion and dislocation accumulation, resulting in the “dislocation pipe diffusion mechanism”. It was also found that the martensitic structures were highly susceptible to the formation of reverted austenite during direct aging treatment, where 19.5% of austenite phase appeared in the microstructure after 15 h of direct aging. Higher fractions of reverted austenite activates the transformation induced plasticity and improves the ductility of heat treated specimens. The results of the present study can be used to tailor the microstructure of the L-PBF printed 17–4 PH stainless steel by post-process heat treatments to achieve a good combination of mechanical properties.

Original languageEnglish
Article number102176
JournalAdditive Manufacturing
Publication statusPublished - Oct-2021


  • 17-4 PH stainless steel
  • Age hardening
  • Laser powder bed fusion
  • Post-process heat treatment
  • Reverted austenite

Cite this