Abstract
Liver receptor homolog-1 (LRH-1) is a nuclear receptor that controls a variety of metabolic pathways. In cultured cells, LRH-1 induces the expression of CYP7A1 and CYP8B1, key enzymes in bile salt synthesis. However, hepatic Cyp7a1 mRNA levels were not reduced upon hepatocyte-specific Lrh-1 deletion in mice. The reason for this apparent paradox has remained elusive. We describe a novel conditional whole-body Lrh-1 knockdown (LRH-1-KD) mouse model to evaluate the dependency of bile salt synthesis and composition on LRH-1. Surprisingly, Cyp7a1 expression was increased rather than decreased under chow-fed conditions in LRH-1-KD mice. This coincided with a significant reduction in expression of intestinal Fgf15, a suppressor of Cyp7a1 expression, and a 58% increase in bile salt synthesis. However, when fecal bile salt loss was stimulated by feeding the bile salt sequestrant colesevelam, Cyp7a1 expression was up-regulated in wildtype mice but not in LRH-1-KD mice (+593% in wildtype versus 19% in LRH-1-KD). This translated into an increase in bile salt synthesis of +272% in wildtype versus +21% in LRH-1-KD mice. Conclusion: Our data provide mechanistic insight into a missing link in the maintenance of bile salt homeostasis during enhanced fecal loss and support the view that LRH-1 controls Cyp7a1 expression from two distinct sites, i.e., liver and ileum, in the enterohepatic circulation. (HEPATOLOGY 2011;53:2075-2085)
Original language | English |
---|---|
Pages (from-to) | 2075-2085 |
Number of pages | 11 |
Journal | Hepatology |
Volume | 53 |
Issue number | 6 |
DOIs | |
Publication status | Published - Jun-2011 |
Keywords
- FARNESOID-X-RECEPTOR
- ORPHAN NUCLEAR RECEPTOR
- CHOLESTEROL 7-ALPHA-HYDROXYLASE GENE
- ACUTE-PHASE RESPONSE
- ACID BIOSYNTHESIS
- GLUCOCORTICOID SYNTHESIS
- FEEDBACK-REGULATION
- FACTOR-I
- EXPRESSION
- HOMEOSTASIS