TY - JOUR
T1 - Long-term expiratory airflow of infants born moderate-late preterm
T2 - A systematic review and meta-analysis
AU - Du Berry, Cassidy
AU - Nesci, Christopher
AU - Cheong, Jeanie L.Y.
AU - FitzGerald, Tara
AU - Mainzer, Rheanna
AU - Ranganathan, Sarath
AU - Doyle, Lex W.
AU - Vrijlandt, Elianne J.L.E.
AU - Welsh, Liam
N1 - Funding Information:
We wish to acknowledge the following individuals for their contribution of aggregate-level data for this meta-analysis: J. Hallberg (Children and Youth Hospital, Södersjukhuset), J. Landry (McGill University, Montreal), J. Michael Collaco (Johns Hopkins University School of Medicine, Baltimore), K. Korsten (University Medical Center Utrecht, The Netherlands), L. Bont (University Medical Center Utrecht), P. Näsänen-Gilmore (National Institute for Health and Welfare, Helsinki and Oulu), Y. Salem (Bern University Hospital, University of Bern) and X. Carbonell-Estrany (Obstetricia Neonatologia, Barcelona). This work is supported by grants from the National Health and Medical Research Council (Centre of Research Excellence #1153176, Project grant #1161304); Medical Research Future Fund (Career Development Fellowship to J.L.Y Cheong #1141354) and from the Victorian Government's Operational Infrastructure Support Programme. C. Du Berry's PhD candidature is supported by the Melbourne Research Scholarship and the Centre of Research Excellence in Newborn Medicine.
Funding Information:
We wish to acknowledge the following individuals for their contribution of aggregate-level data for this meta-analysis: J. Hallberg (Children and Youth Hospital, Södersjukhuset), J. Landry (McGill University, Montreal), J. Michael Collaco (Johns Hopkins University School of Medicine, Baltimore), K. Korsten (University Medical Center Utrecht, The Netherlands), L. Bont (University Medical Center Utrecht), P. Näsänen-Gilmore (National Institute for Health and Welfare, Helsinki and Oulu), Y. Salem (Bern University Hospital, University of Bern) and X. Carbonell-Estrany (Obstetricia Neonatologia, Barcelona). This work is supported by grants from the National Health and Medical Research Council (Centre of Research Excellence #1153176, Project grant #1161304); Medical Research Future Fund (Career Development Fellowship to J.L.Y Cheong #1141354) and from the Victorian Government's Operational Infrastructure Support Programme. C. Du Berry's PhD candidature is supported by the Melbourne Research Scholarship and the Centre of Research Excellence in Newborn Medicine.
Publisher Copyright:
© 2022 The Author(s)
PY - 2022/10
Y1 - 2022/10
N2 - Background: Moderate-late preterm (MLP; 32 to <37 weeks’ gestation) birth is associated with reduced expiratory airflow during child, adolescent and adult years. However, some studies have reported only minimal airflow limitation and hence it is unclear if clinical assessment in later life is warranted. Our aim was to compare maximal expiratory airflow in children and adults born MLP with term-born controls, and with expected norms.Methods: We systematically reviewed studies reporting z-scores for spirometric indices (forced expired volume in 1 second [FEV1], forced vital capacity [FVC], FEV1/FVC ratio and forced expiratory flow at 25-75% of FVC [FEF25-75%]) from participants born MLP aged five years or older, with or without a term-born control group from 4 databases (MEDLINE, CINAHL, Embase, Emcare). Publications were searched for between the 22nd of September 2021 to the 29th of September 2021. A meta-analysis of eligible studies was conducted using a random effects model. The study protocol was published in PROSPERO (CRD #42021281518).Findings: We screened 4970 articles and identified 18 relevant studies, 15 of which were eligible for meta-analysis (8 with term-born controls and 7 without). Compared with controls, MLP participants had lower z-scores (mean difference [95% confidence interval] I2) for FEV1: -0.22 [-0.35, -0.09] 49.3%, FVC: -0.23 [-0.4, -0.06] 71.8%, FEV1/FVC: -0.11 [-0.20 to -0.03] 9.3% and FEF25-75%: -0.27 [-0.41 to -0.12] 21.9%. Participants born MLP also had lower z-scores, on average, when compared with a z-score of 0 (mean [95% CI] I2) for FEV1: -0.26 [-0.40 to -0.11] 85.2%, FVC: -0.18 [-0.34 to -0.02] 88.3%, FEV1/FVC: -0.24 [-0.43 to -0.05] 90.5% and FEF25-75%: -0.33 [-0.54 to -0.20] 94.7%.Interpretation: Those born MLP had worse expiratory airflows than those born at term, and compared with norms, although reductions were modest. Clinicians should be aware that children and adults born MLP may be at higher risk of obstructive lung disease compared with term-born peers.Funding: This work is supported by grants from the National Health and Medical Research Council (Centre of Research Excellence #1153176, Project grant #1161304); Medical Research Future Fund (Career Development Fellowship to J.L.Y Cheong #1141354) and from the Victorian Government's Operational Infrastructure Support Programme. C. Du Berry's PhD candidature is supported by the Melbourne Research Scholarship and the Centre of Research Excellence in Newborn Medicine.
AB - Background: Moderate-late preterm (MLP; 32 to <37 weeks’ gestation) birth is associated with reduced expiratory airflow during child, adolescent and adult years. However, some studies have reported only minimal airflow limitation and hence it is unclear if clinical assessment in later life is warranted. Our aim was to compare maximal expiratory airflow in children and adults born MLP with term-born controls, and with expected norms.Methods: We systematically reviewed studies reporting z-scores for spirometric indices (forced expired volume in 1 second [FEV1], forced vital capacity [FVC], FEV1/FVC ratio and forced expiratory flow at 25-75% of FVC [FEF25-75%]) from participants born MLP aged five years or older, with or without a term-born control group from 4 databases (MEDLINE, CINAHL, Embase, Emcare). Publications were searched for between the 22nd of September 2021 to the 29th of September 2021. A meta-analysis of eligible studies was conducted using a random effects model. The study protocol was published in PROSPERO (CRD #42021281518).Findings: We screened 4970 articles and identified 18 relevant studies, 15 of which were eligible for meta-analysis (8 with term-born controls and 7 without). Compared with controls, MLP participants had lower z-scores (mean difference [95% confidence interval] I2) for FEV1: -0.22 [-0.35, -0.09] 49.3%, FVC: -0.23 [-0.4, -0.06] 71.8%, FEV1/FVC: -0.11 [-0.20 to -0.03] 9.3% and FEF25-75%: -0.27 [-0.41 to -0.12] 21.9%. Participants born MLP also had lower z-scores, on average, when compared with a z-score of 0 (mean [95% CI] I2) for FEV1: -0.26 [-0.40 to -0.11] 85.2%, FVC: -0.18 [-0.34 to -0.02] 88.3%, FEV1/FVC: -0.24 [-0.43 to -0.05] 90.5% and FEF25-75%: -0.33 [-0.54 to -0.20] 94.7%.Interpretation: Those born MLP had worse expiratory airflows than those born at term, and compared with norms, although reductions were modest. Clinicians should be aware that children and adults born MLP may be at higher risk of obstructive lung disease compared with term-born peers.Funding: This work is supported by grants from the National Health and Medical Research Council (Centre of Research Excellence #1153176, Project grant #1161304); Medical Research Future Fund (Career Development Fellowship to J.L.Y Cheong #1141354) and from the Victorian Government's Operational Infrastructure Support Programme. C. Du Berry's PhD candidature is supported by the Melbourne Research Scholarship and the Centre of Research Excellence in Newborn Medicine.
KW - Expiratory airflow
KW - Moderate-late preterm
KW - Preterm
KW - Pulmonary function
KW - Spirometry
U2 - 10.1016/j.eclinm.2022.101597
DO - 10.1016/j.eclinm.2022.101597
M3 - Article
AN - SCOPUS:85135126871
SN - 2589-5370
VL - 52
JO - EClinicalMedicine
JF - EClinicalMedicine
M1 - 101597
ER -