TY - JOUR
T1 - Low-crystallinity to highly amorphous copolyesters with high glass transition temperatures based on rigid carbohydrate-derived building blocks
AU - Chen, Jingying
AU - Lin, Yiming
AU - Chen, Yong
AU - Koning, Cor E.
AU - Wu, Jing
AU - Wang, Huaping
N1 - Publisher Copyright:
© 2020 Society of Industrial Chemistry
PY - 2021/5
Y1 - 2021/5
N2 - The current trend of developing novel biobased polymeric materials is focused more on utilizing the unique structural/physical properties of renewable building blocks towards niche market applications. In this work, with the aim of developing low-crystallinity to amorphous polyesters with enhanced thermal properties, a series of copolyesters based on rigid and structurally asymmetric carbohydrate-derived building blocks, namely furan-2,5-dicarboxylic acid and isosorbide, and 1,4-butanediol were successfully synthesized using melt polycondensation. The copolyesters were obtained with varied chemical compositions and rather high molecular weights (Mn = 24 000–31 000 g mol−1) and intrinsic viscosities ([η] = 0.56–0.72 dL g−1). Incorporation of both building blocks significantly enhances the glass transition temperatures (Tg = 38–107 °C) of polyesters, and also efficiently inhibits the crystallization of the copolyesters. A low content of isosorbide (ca 10 mol%) leads to complete transition of the homopolyester to nearly fully amorphous materials. Detailed characterizations of the chemical structures and thermal properties of the synthesized copolyesters were conducted using various analytical techniques. In addition, hydrolytic and enzymatic degradations of the copolymers in the presence of porcine pancreatic lipase and cutinase were also investigated.
AB - The current trend of developing novel biobased polymeric materials is focused more on utilizing the unique structural/physical properties of renewable building blocks towards niche market applications. In this work, with the aim of developing low-crystallinity to amorphous polyesters with enhanced thermal properties, a series of copolyesters based on rigid and structurally asymmetric carbohydrate-derived building blocks, namely furan-2,5-dicarboxylic acid and isosorbide, and 1,4-butanediol were successfully synthesized using melt polycondensation. The copolyesters were obtained with varied chemical compositions and rather high molecular weights (Mn = 24 000–31 000 g mol−1) and intrinsic viscosities ([η] = 0.56–0.72 dL g−1). Incorporation of both building blocks significantly enhances the glass transition temperatures (Tg = 38–107 °C) of polyesters, and also efficiently inhibits the crystallization of the copolyesters. A low content of isosorbide (ca 10 mol%) leads to complete transition of the homopolyester to nearly fully amorphous materials. Detailed characterizations of the chemical structures and thermal properties of the synthesized copolyesters were conducted using various analytical techniques. In addition, hydrolytic and enzymatic degradations of the copolymers in the presence of porcine pancreatic lipase and cutinase were also investigated.
KW - 2,5-furandicarboxylic acid
KW - amorphous polyesters
KW - biobased monomers
KW - biodegradable polymers
KW - carbohydrates
KW - isosorbide
UR - http://www.scopus.com/inward/record.url?scp=85091613654&partnerID=8YFLogxK
U2 - 10.1002/pi.6123
DO - 10.1002/pi.6123
M3 - Article
AN - SCOPUS:85091613654
SN - 0959-8103
VL - 70
SP - 536
EP - 545
JO - Polymer International
JF - Polymer International
IS - 5
ER -