Abstract
Black phosphorus (BP) has been recently unveiled as a promising 2D direct bandgap semiconducting material. Here, ambipolar field-effect transistor behavior of nanolayers of BP with ferromagnetic tunnel contacts is reported. Using TiO2 /Co contacts, a reduced Schottky barrier <50 meV, which can be tuned further by the gate voltage, is obtained. Eminently, a good transistor performance is achieved in the devices discussed here, with drain current modulation of four to six orders of magnitude and a mobility of μh ≈ 155 cm(2) V(-1) s(-1) for hole conduction at room temperature. Magnetoresistance calculations using a spin diffusion model reveal that the source-drain contact resistances in the BP device can be tuned by gate voltage to an optimal range for injection and detection of spin-polarized holes. The results of the study demonstrate the prospect of BP nanolayers for efficient nanoelectronic and spintronic devices.
Original language | English |
---|---|
Pages (from-to) | 2209-2216 |
Number of pages | 8 |
Journal | Small |
Volume | 11 |
Issue number | 18 |
DOIs | |
Publication status | Published - 14-Jan-2015 |
Externally published | Yes |