Mandible Segmentation of Dental CBCT Scans Affected by Metal Artifacts Using Coarse-to-Fine Learning Model

Research output: Contribution to journalArticleAcademicpeer-review

4 Downloads (Pure)

Abstract

Accurate segmentation of the mandible from cone-beam computed tomography (CBCT) scans is an important step for building a personalized 3D digital mandible model for maxillofacial surgery and orthodontic treatment planning because of the low radiation dose and short scanning duration. CBCT images, however, exhibit lower contrast and higher levels of noise and artifacts due to extremely low radiation in comparison with the conventional computed tomography (CT), which makes automatic mandible segmentation from CBCT data challenging. In this work, we propose a novel coarse-to-fine segmentation framework based on 3D convolutional neural network and recurrent SegUnet for mandible segmentation in CBCT scans. Specifically, the mandible segmentation is decomposed into two stages: localization of the mandible-like region by rough segmentation and further accurate segmentation of the mandible details. The method was evaluated using a dental CBCT dataset. In addition, we evaluated the proposed method and compared it with state-of-the-art methods in two CT datasets. The experiments indicate that the proposed algorithm can provide more accurate and robust segmentation results for different imaging techniques in comparison with the state-of-the-art models with respect to these three datasets.

Original languageEnglish
Article number560
Number of pages17
JournalJournal of personalized medicine
Volume11
Issue number6
DOIs
Publication statusPublished - 16-Jun-2021

Cite this