Measures and indices of reflection symmetry for convex polyhedra

Alexander V. Tuzikov, Jos B.T.M. Roerdink, Henk J.A.M. Heijmans, Stanislav V. Sheynin

Research output: Chapter in Book/Report/Conference proceedingChapterProfessional

161 Downloads (Pure)

Abstract

This paper discusses measures of reflection symmetry for 3D convex sets which are based on Minkowski addition and Brunn-Minkowski inequalities for volume and mixed volume. These measures are invariant to similitude transformations. It is also shown how these measures can be computed efficiently for convex polyhedra.
Original languageEnglish
Title of host publicationMathematical Morphology and its Applications to Image and Signal Processing
EditorsJ B T M Roerdink, H J A M Heijmans
Place of PublicationDordrecht/Boston/London
PublisherUniversity of Groningen, Johann Bernoulli Institute for Mathematics and Computer Science
Pages59 - 65
Number of pages7
Publication statusPublished - 1998

Keywords

  • convex polyhedra
  • reflection symmetry measure
  • Minkowski addition

Fingerprint

Dive into the research topics of 'Measures and indices of reflection symmetry for convex polyhedra'. Together they form a unique fingerprint.

Cite this