Metabolic engineering of beta-oxidation in Penicillium chrysogenum for improved semi-synthetic cephalosporin biosynthesis

Tânia Veiga, Andreas K Gombert, Nils Landes, Maarten D Verhoeven, Jan A K W Kiel, Arjen M Krikken, Jeroen G Nijland, Hesselien Touw, Marijke A H Luttik, John C van der Toorn, Arnold J M Driessen, Roel A L Bovenberg, Marco A van den Berg, Ida J van der Klei, Jack T Pronk, Jean-Marc Daran*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

23 Citations (Scopus)
494 Downloads (Pure)

Abstract

Industrial production of semi-synthetic cephalosporins by Penicillium chrysogenum requires supplementation of the growth media with the side-chain precursor adipic acid. In glucose-limited chemostat cultures of P. chrysogenum, up to 88% of the consumed adipic acid was not recovered in cephalosporinrelated products, but used as an additional carbon and energy source for growth. This low efficiency of side-chain precursor incorporation provides an economic incentive for studying and engineering the metabolism of adipic acid in P. cluysogenum. Chemostat-based transcriptome analysis in the presence and absence of adipic acid confirmed that adipic acid metabolism in this fungus occurs via beta-oxidation. A set of 52 adipate-responsive genes included six putative genes for acyl-CoA oxidases and dehydrogenases, enzymes responsible for the first step of beta-oxidation. Subcellular localization of the differentially expressed acyl-CoA oxidases and dehydrogenases revealed that the oxidases were exclusively targeted to peroxisomes, while the dehydrogenases were found either in peroxisomes or in mitochondria. Deletion of the genes encoding the peroxisomal acyl-CoA oxidase Pc20g01800 and the mitochondrial acyl-CoA dehydrogenase Pc20g07920 resulted in a 1.6- and 3.7-fold increase in the production of the semi-synthetic cephalosporin intermediate adipoyl-6-APA, respectively. The deletion strains also showed reduced adipate consumption compared to the reference strain, indicating that engineering of the first step of beta-oxidation successfully redirected a larger fraction of adipic acid towards cephalosporin biosynthesis. (C) 2012 Elsevier Inc. All rights reserved.

Original languageEnglish
Pages (from-to)437-448
Number of pages12
JournalMetabolic Engineering
Volume14
Issue number4
DOIs
Publication statusPublished - Jul-2012

Keywords

  • Penicillium chrysogenum
  • beta-lactams
  • Cephalosporins
  • beta-oxidation
  • Adipic acid
  • Metabolic engineering
  • CHAIN DICARBOXYLIC-ACIDS
  • CLAVULIGERUS CEFE GENE
  • ACYL-COA OXIDASE
  • C-14 ADIPIC ACID
  • SACCHAROMYCES-CEREVISIAE
  • ASPERGILLUS-NIDULANS
  • STREPTOMYCES-CLAVULIGERUS
  • FATTY-ACIDS
  • HUMAN-URINE
  • PEROXISOME PROLIFERATION

Fingerprint

Dive into the research topics of 'Metabolic engineering of beta-oxidation in Penicillium chrysogenum for improved semi-synthetic cephalosporin biosynthesis'. Together they form a unique fingerprint.

Cite this