Abstract
Hubbell's neutral theory of biodiversity has generated much debate over the need for niches to explain biodiversity patterns. Discussion of the theory has focused on its neutrality assumption, i.e. the functional equivalence of species in competition and dispersal. Almost no attention has been paid to another critical aspect of the theory, the assumptions on the nature of the speciation process. In the standard version of the neutral theory each individual has a fixed probability to speciate. Hence, the speciation rate of a species is directly proportional to its abundance in the metacommunity. We argue that this assumption is not realistic for most speciation modes because speciation is an emergent property of complex processes at larger spatial and temporal scales and, consequently, speciation rate can either increase or decrease with abundance. Accordingly, the assumption that speciation rate is independent of abundance (each species has a fixed probability to speciate) is a more natural starting point in a neutral theory of biodiversity. Here we present a neutral model based on this assumption and we confront this new model to 20 large data sets of tree communities, expecting the new model to fit the data better than Hubbell's original model. We find, however, that the data sets are much better fitted by Hubbell's original model. This implies that species abundance data can discriminate between different modes of speciation, or, stated otherwise, that the mode of speciation has a large impact on the species abundance distribution. Our model analysis points out new ways to study how biodiversity patterns are shaped by the interplay between evolutionary processes (speciation, extinction) and ecological processes (competition, dispersal).
Original language | English |
---|---|
Pages (from-to) | 241-258 |
Number of pages | 18 |
Journal | Oikos |
Volume | 116 |
Issue number | 2 |
DOIs | |
Publication status | Published - Feb-2007 |
Keywords
- SPECIES-ABUNDANCE
- SAMPLING THEORY
- COMMUNITY ECOLOGY
- TROPICAL FORESTS
- POPULATION-SIZE
- WESTERN-GHATS
- NATIONAL-PARK
- DIVERSITY
- ALLELES
- DYNAMICS