## Abstract

We derive the basic formalism of density functional theory for time-dependent electron-nuclear systems. The basic variables of this theory are the electron density in body-fixed frame coordinates and the diagonal of the nuclear N-body density matrix. The body-fixed frame transformation is carried out in order to achieve an electron density that reflects the internal symmetry of the system. We discuss the implications of this body-fixed frame transformation and establish a Runge-Gross-type theorem and derive Kohn-Sham equations for the electrons and nuclei. We illustrate the formalism by performing calculations on a one-dimensional diatomic molecule for which the many-body Schrodinger equation can be solved numerically. These benchmark results are then compared to the solution of the time-dependent Kohn-Sham equations in the Hartree approximation. Furthermore, we analyze the excitation energies obtained from the linear response formalism in the single pole approximation. We find that there is a clear need for improved functionals that go beyond the simple Hartree approximation.

Original language | English |
---|---|

Article number | 052514 |

Number of pages | 17 |

Journal | Physical Review A |

Volume | 76 |

Issue number | 5 |

DOIs | |

Publication status | Published - Nov-2007 |

## Keywords

- LASER-PULSE
- NONEQUILIBRIUM PROCESSES
- POLYATOMIC-MOLECULES
- SCHRODINGER-EQUATION
- ELECTRON CORRELATION
- DOUBLE-IONIZATION
- NUCLEAR
- MOTIONS
- FIELDS
- MODEL