Abstract
Immunoisolation of pancreatic islets in alginate microcapsules allows for transplantation in the absence of immunosuppression but graft survival time is still limited. This limited graft survival is caused by a combination of tissue responses to the encapsulating biomaterial and islets. A significant loss of islet cells occurs in the immediate period after transplantation and is caused by a high susceptibility of islet cells to inflammatory stress during this period. Here we investigated whether necrostatin-1 (Nec-1), a necroptosis inhibitor, can reduce the loss of islet cells under stress in vitro and in vivo. To this end, we developed a Nec-1 controlled-release system using poly (D,L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) as the application of Nec-1 in vivo is limited by low stability and possible side effects. The PLGA NPs stably released Nec-1 for 6 days in vitro and protected beta cells against hypoxia-induced cell death in vitro. Treatment with these Nec-1 NPs at days 0, 6, and 12 post-islet transplantation in streptozotocin-diabetic mice confirmed the absence of side effects as graft survival was similar in encapsulated islet grafts in the absence and presence of Nec-1. However, we found no further prolongation of graft survival of encapsulated grafts which might be explained by the high biocompatibility of the alginate encapsulation system that provoked a very mild tissue response. We expect that the Nec-1-releasing NPs could find application to immunoisolation systems that elicit stronger inflammatory responses, such as macrodevices and vasculogenic biomaterials.
Original language | English |
---|---|
Pages (from-to) | 288-295 |
Number of pages | 8 |
Journal | Journal of Biomedical Materials Research. Part A |
Volume | 112 |
Issue number | 2 |
DOIs | |
Publication status | Published - Feb-2024 |
Keywords
- Mice
- Animals
- Islets of Langerhans Transplantation
- Diabetes Mellitus, Experimental/therapy
- Islets of Langerhans/metabolism
- Biocompatible Materials/adverse effects
- Alginates/metabolism