TY - JOUR
T1 - Novel Fab-peptide-HLA-I fusion proteins for redirecting pre-existing anti-CMV T cell immunity to selective eliminate carcinoma cells
AU - Britsch, Isabel
AU - van Wijngaarden, Anne P.
AU - Ke, Xiurong
AU - Hendriks, Mark A.J.M.
AU - Samplonius, Douwe F.
AU - Ploeg, Emily M.
AU - Helfrich, Wijnand
N1 - Funding Information:
This work was supported by Dutch Cancer Society project numbers 13077 (to W.H.) and GSMS-123015 (to I. B.).
Publisher Copyright:
© 2023 The Author(s). Published with license by Taylor & Francis Group, LLC.
PY - 2023
Y1 - 2023
N2 - Typically, anticancer CD8pos T cells occur at low frequencies and become increasingly impaired in the tumor micro environment. In contrast, antiviral CD8pos T cells display a much higher polyclonality, frequency, and functionality. In particular, cytomegalovirus (CMV) infection induces high numbers of ‘inflationary’ CD8pos T cells that remain lifelong abundantly present in CMV-seropositive subjects. Importantly, these so-called inflationary anti-CMV T cells increase with age, maintain a ready-to-go state, populate tumors, and do not become exhausted or senescent. Given these favorable attributes, we devised a novel series of recombinant Fab-peptide-HLA-I fusion proteins and coined them ‘ReTARGs’. A ReTARG fusion protein consists of a high-affinity Fab antibody fragment directed to carcinoma-associated cell surface antigen EpCAM (or EGFR), fused in tandem with soluble HLA-I molecule/β2-microglobulin, genetically equipped with an immunodominant peptide derived from CMV proteins pp65 (or IE-1). Decoration with EpCAM-ReTARGpp65 rendered EpCAM-expressing primary patient-derived carcinoma cells highly sensitive to selective elimination by cognate anti-CMV CD8pos T cells. Importantly, this treatment did not induce excessive levels of proinflammatory T cell-secreted IFNγ. In contrast, analogous treatment with equimolar amounts of EpCAM/CD3-directed bispecific T-cell engager solitomab resulted in a massive release of IFNγ, a feature commonly associated with adverse cytokine-release syndrome. Combinatorial treatment with EpCAM-ReTARGpp65 and EGFR-ReTARGIE-1 strongly potentiated selective cancer cell elimination owing to the concerted action of the corresponding cognate anti-CMV CD8pos T cell clones. In conclusion, ReTARG fusion proteins may be useful as an alternative or complementary form of targeted cancer immunotherapy for ‘cold’ solid cancers.
AB - Typically, anticancer CD8pos T cells occur at low frequencies and become increasingly impaired in the tumor micro environment. In contrast, antiviral CD8pos T cells display a much higher polyclonality, frequency, and functionality. In particular, cytomegalovirus (CMV) infection induces high numbers of ‘inflationary’ CD8pos T cells that remain lifelong abundantly present in CMV-seropositive subjects. Importantly, these so-called inflationary anti-CMV T cells increase with age, maintain a ready-to-go state, populate tumors, and do not become exhausted or senescent. Given these favorable attributes, we devised a novel series of recombinant Fab-peptide-HLA-I fusion proteins and coined them ‘ReTARGs’. A ReTARG fusion protein consists of a high-affinity Fab antibody fragment directed to carcinoma-associated cell surface antigen EpCAM (or EGFR), fused in tandem with soluble HLA-I molecule/β2-microglobulin, genetically equipped with an immunodominant peptide derived from CMV proteins pp65 (or IE-1). Decoration with EpCAM-ReTARGpp65 rendered EpCAM-expressing primary patient-derived carcinoma cells highly sensitive to selective elimination by cognate anti-CMV CD8pos T cells. Importantly, this treatment did not induce excessive levels of proinflammatory T cell-secreted IFNγ. In contrast, analogous treatment with equimolar amounts of EpCAM/CD3-directed bispecific T-cell engager solitomab resulted in a massive release of IFNγ, a feature commonly associated with adverse cytokine-release syndrome. Combinatorial treatment with EpCAM-ReTARGpp65 and EGFR-ReTARGIE-1 strongly potentiated selective cancer cell elimination owing to the concerted action of the corresponding cognate anti-CMV CD8pos T cell clones. In conclusion, ReTARG fusion proteins may be useful as an alternative or complementary form of targeted cancer immunotherapy for ‘cold’ solid cancers.
KW - anti-CMV T cells
KW - Cancer immunotherapy
KW - carcinoma
KW - EpCAM
KW - T cell-induced cytotoxicity
UR - http://www.scopus.com/inward/record.url?scp=85159083089&partnerID=8YFLogxK
U2 - 10.1080/2162402X.2023.2207868
DO - 10.1080/2162402X.2023.2207868
M3 - Article
C2 - 37180637
AN - SCOPUS:85159083089
SN - 2162-4011
VL - 12
JO - OncoImmunology
JF - OncoImmunology
IS - 1
M1 - 2207868
ER -