On the applicability of linear elastic fracture mechanics scaling relations in the analysis of intergranular fracture of brittle polycrystals

Zahid Shabir, Erik van der Giessen, Armando Duarte, Angelo Simone*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

3 Citations (Scopus)
66 Downloads (Pure)

Abstract

Crack propagation in polycrystalline specimens is studied by means of a generalized finite element method with linear elastic isotropic grains and cohesive grain boundaries. The corresponding mode-I intergranular cracks are characterized using a grain boundary brittleness criterion that depends on cohesive law parameters and average grain boundary length. It is shown that load–displacement curves for specimens with the same microstructure and for various cohesive law parameters can be obtained from a master load–displacement curve by means of simple linear elastic fracture mechanics scaling relations. This property is a consequence of the independence of intergranular crack paths from cohesive law parameters. Perfect scaling is obtained for cases characterized by the same grain-boundary brittleness number, irrespective of its value, whereas scaling is approximate for cases with different but relatively large values of the grain-boundary brittleness number. The former case corresponds to grain-boundary traction profiles that are identical apart from a scale factor; in the latter case, a large grain-boundary brittleness number implies similar, apart from a scale factor, traction profiles. By exploiting this property, it is demonstrated that computationally expensive simulations can be avoided above a certain grain-boundary brittleness threshold value.
Original languageEnglish
Pages (from-to)205-219
Number of pages15
JournalComputational Mechanics
Volume220
Issue number2
Early online date23-Jul-2019
DOIs
Publication statusPublished - Dec-2019

Keywords

  • Brittle fracture
  • Polycrystals
  • Generalized finite element method
  • Linear elastic fracture mechanics
  • Scaling
  • SIMULATION
  • GROWTH

Cite this