## Abstract

The harmonic influence is a measure of node influence in social networks that quantifies the ability of a leader node to alter the average opinion of the network, acting against an adversary field node. The definition of harmonic influence assumes linear interactions between the nodes described by an undirected weighted graph; its computation is equivalent to solve a discrete Dirichlet problem associated to a grounded Laplacian for every node. This measure has been recently studied, under slightly more restrictive assumptions, by Vassio et al., IEEE Trans. Control Netw. Syst., 2014, who proposed a distributed message passing algorithm that concurrently computes the harmonic influence of all nodes. In this paper, we provide a convergence analysis for this algorithm, which largely extends upon previous results: we prove that the algorithm converges asymptotically, under the only assumption of the interaction Laplacian being symmetric. However, the convergence value does not in general coincide with the harmonic influence: by simulations, we show that when the network has a larger number of cycles, the algorithm becomes slower and less accurate, but nevertheless provides a useful approximation. Simulations also indicate that the symmetry condition is not necessary for convergence and that performance scales very well in the number of nodes of the graph.

Original language | English |
---|---|

Article number | 8255671 |

Pages (from-to) | 116-129 |

Number of pages | 14 |

Journal | IEEE Transactions on Network Science and Engineering |

Volume | 6 |

Issue number | 2 |

DOIs | |

Publication status | Published - 1-Apr-2019 |

Externally published | Yes |

## Keywords

- Distributed algorithm
- message passing
- opinion dynamics
- social networks