Optimisation of scan duration and image quality in oncological 89Zr immunoPET imaging using the Biograph Vision PET/CT.

Research output: Contribution to journalArticleAcademicpeer-review

2 Citations (Scopus)
8 Downloads (Pure)


PURPOSE: Monoclonal antibody (mAb)-based PET (immunoPET) imaging can characterise tumour lesions non-invasively. It may be a valuable tool to determine which patients may benefit from treatment with a specific monoclonal antibody (mAb) and evaluate treatment response. For 89Zr immunoPET imaging, higher sensitivity of state-of-the art PET/CT systems equipped with silicon photomultiplier (SiPM)-based detector elements may be beneficial as the low positron abundance of 89Zr causes a low signal-to-noise level. Moreover, the long physical half-life limits the amount of activity that can be administered to the patients leading to poor image quality even when using long scan durations. Here, we investigated the difference in semiquantitative performance between the PMT-based Biograph mCT, our clinical reference system, and the SiPM-based Biograph Vision PET/CT in 89Zr immunoPET imaging. Furthermore, the effects of scan duration reduction using the Vision on semiquantitative imaging parameters and its influence on image quality assessment were evaluated.

METHODS: Data were acquired on day 4 post 37 MBq 89Zr-labelled mAb injection. Five patients underwent a double scan protocol on both systems. Ten patients were scanned only on the Vision. For PET image reconstruction, three protocols were used, i.e. one camera-dependent protocol and European Association of Nuclear Medicine Research Limited (EARL) standards 1 and 2 compliant protocols. Vision data were acquired in listmode and were reprocessed to obtain images at shorter scan durations. Semiquantitative PET image parameters were derived from tumour lesions and healthy tissues to assess differences between systems and scan durations. Differently reconstructed images obtained using the Vision were visually scored regarding image quality by two nuclear medicine physicians.

RESULTS: When images were reconstructed using 100% acquisition time on both systems following EARL standard 1 compliant reconstruction protocols, results regarding semiquantification were comparable. For Vision data, reconstructed images that conform to EARL1 standards still resulted in comparable semiquantification at shorter scan durations (75% and 50%) regarding 100% acquisition time.

CONCLUSION: Scan duration of 89Zr immunoPET imaging using the Vision can be decreased up to 50% compared with using the mCT while maintaining image quality using the EARL1 compliant reconstruction protocol.

Original languageEnglish
Pages (from-to)2258–2270
Number of pages13
JournalEuropean Journal of Nuclear Medicine and Molecular Imaging
Early online date22-Mar-2023
Publication statusPublished - Jul-2023

Cite this