PACS and SPIRE photometer maps of M33: First results of the HERschel M33 Extended Survey (HERM33ES)

C. Kramer*, C. Buchbender, E. M. Xilouris, M. Boquien, J. Braine, D. Calzetti, S. Lord, B. Mookerjea, G. Quintana-Lacaci, M. Relano, G. Stacey, F. S. Tabatabaei, S. Verley, S. Aalto, S. Akras, M. Albrecht, S. Anderl, R. Beck, F. Bertoldi, F. CombesM. Dumke, S. Garcia-Burillo, M. Gonzalez, P. Gratier, R. Guesten, C. Henkel, F. P. Israel, B. Koribalski, A. Lundgren, J. Martin-Pintado, M. Roellig, E. Rosolowsky, K. F. Schuster, K. Sheth, A. Sievers, J. Stutzki, R.P.J. Tilanus, F. van der Tak, M. C. Wiedner, Paul P. van der Werf

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

60 Citations (Scopus)


Context. Within the framework of the HERM33ES key program, we are studying the star forming interstellar medium in the nearby, metal-poor spiral galaxy M33, exploiting the high resolution and sensitivity of Herschel.

Aims. We use PACS and SPIRE maps at 100, 160, 250, 350, and 500 mu m wavelength, to study the variation of the spectral energy distributions (SEDs) with galacto-centric distance.

Methods. Detailed SED modeling is performed using azimuthally averaged fluxes in elliptical rings of 2 kpc width, out to 8 kpc galacto-centric distance. Simple isothermal and two-component grey body models, with fixed dust emissivity index, are fitted to the SEDs between 24 mu m and 500 mu m using also MIPS/Spitzer data, to derive first estimates of the dust physical conditions.

Results. The far-infrared and submillimeter maps reveal the branched, knotted spiral structure of M33. An underlying diffuse disk is seen in all SPIRE maps (250-500 mu m). Two component fits to the SEDs agree better than isothermal models with the observed, total and radially averaged flux densities. The two component model, with beta fixed at 1.5, best fits the global and the radial SEDs. The cold dust component clearly dominates; the relative mass of the warm component is less than 0.3% for all the fits. The temperature of the warm component is not well constrained and is found to be about 60 K +/- 10 K. The temperature of the cold component drops significantly from similar to 24 K in the inner 2 kpc radius to 13 K beyond 6 kpc radial distance, for the best fitting model. The gas-to-dust ratio for beta = 1.5, averaged over the galaxy, is higher than the solar value by a factor of 1.5 and is roughly in agreement with the subsolar metallicity of M33.

Original languageEnglish
Article number67
Pages (from-to)L67
Number of pages5
JournalAstronomy & astrophysics
Publication statusPublished - Jul-2010


  • galaxies: individual: M33
  • galaxies: evolution
  • Local Group
  • galaxies: ISM
  • dust, extinction
  • GALAXY M33

Cite this