Perinatal exposure to the immune-suppressant di-n-octyltin dichloride affects brain development in rats

Didima M G de Groot, Louisa Linders, Reinier Kayser, Rianne Nederlof, Celine de Esch, Roderick C Slieker, C Frieke Kuper, Andre Wolterbeek, V Jeroen de Groot, Andor Veltien, Arend Heerschap, Aren van Waarde, Rudi A J O Dierckx, Erik F J de Vries*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

1 Citation (Scopus)
65 Downloads (Pure)

Abstract

Disruption of the immune system during embryonic brain development by environmental chemicals was proposed as a possible cause of neurodevelopmental disorders. We previously found adverse effects of di-n-octyltin dichloride (DOTC) on maternal and developing immune systems of rats in an extended one-generation reproductive toxicity study according to the OECD 443 test guideline. We hypothesize that the DOTC-induced changes in the immune system can affect neurodevelopment. Therefore, we used in-vivo MRI and PET imaging and genomics, in addition to behavioral testing and neuropathology as proposed in OECD test guideline 443, to investigate the effect of DOTC on structural and functional brain development. Male rats were exposed to DOTC (0, 3, 10, or 30 mg/kg of diet) from 2 weeks prior to mating of the F0-generation until sacrifice of F1-animals. The brains of rats, exposed to DOTC showed a transiently enlarged volume of specific brain regions (MRI), altered specific gravity, and transient hyper-metabolism ([ 18F]FDG PET). The alterations in brain development concurred with hyper-responsiveness in auditory startle response and slight hyperactivity in young adult animals. Genomics identified altered transcription of key regulators involved in neurodevelopment and neural function (e.g. Nrgrn, Shank3, Igf1r, Cck, Apba2, Foxp2); and regulators involved in cell size, cell proliferation, and organ development, especially immune system development and functioning (e.g. LOC679869, Itga11, Arhgap5, Cd47, Dlg1, Gas6, Cml5, Mef2c). The results suggest the involvement of immunotoxicity in the impairment of the nervous system by DOTC and support the hypothesis of a close connection between the immune and nervous systems in brain development.

Original languageEnglish
Pages (from-to)283-299
Number of pages17
JournalToxicology mechanisms and methods
Volume34
Issue number3
Early online date9-Nov-2023
DOIs
Publication statusPublished - 2024

Fingerprint

Dive into the research topics of 'Perinatal exposure to the immune-suppressant di-n-octyltin dichloride affects brain development in rats'. Together they form a unique fingerprint.

Cite this