Planar Homotropenylium Cation: A Transition State with Reversed Aromaticity

Christopher M. Gibson, Remco W. A. Havenith, Patrick W. Fowler*, Leonardus W. Jenneskens

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

6 Citations (Scopus)

Abstract

In contrast to the equilibrium structure of the homoaromatic C-s homotropenylium cation, C8H9+ (1), which supports a pinched diatropic ring current, the C(2)v transition state (2) for inversion of the methylene bridge of 1 is antiaromatic and supports a two-lobe paratropic pi current, as detected by plotting B3LYP/6-31G** ipsocentric current maps. Participation of the bridge CH bonds is crucial for the change in global character of the current in the transition state, as shown by the quenching of its paratropicity on substitution of H by F. Orbital-based arguments allow rationalization of this transition between homoaromaticity and hyper(conjugative) antiaromaticity. More generally, the hyperconjugative ring current in a family of C-2v planar-constrained geometries of (CR2)CN-1HN-1q homoannulenes (R = H, F) can be switched from paratropic (antiaromatic) to diatropic (aromatic) by variation of ring size, charge, and bridge substituent. An orbital-based counting rule accounts for these systematic trends.

Original languageEnglish
Pages (from-to)1395-1401
Number of pages7
JournalJournal of Organic Chemistry
Volume80
Issue number3
DOIs
Publication statusPublished - 6-Feb-2015

Keywords

  • RING CURRENTS
  • ELECTRONIC-STRUCTURE
  • MAGNETIC-PROPERTIES
  • HOMOTROPYLIUM CATION
  • AB-INITIO
  • ION
  • DELOCALIZATION
  • MOLECULES
  • MOBIUS

Cite this