Positron emission tomography in primary brain tumours using cobalt-55

HM Jansen, RA Dierckx, JM Hew, AM Paans, JM Minderhoud, J Korf

    Research output: Contribution to journalArticleAcademicpeer-review

    13 Citations (Scopus)


    Primary brain tumours are usually assessed by computed tomography (CT) and magnetic resonance imaging (MRI), sometimes in conjunction with positron emission tomography (PET). We used cobalt-55 (Co-55) as a calcium (Ga) tracer to visualize decaying tumour tissue, based on the fact that Ca-influx is essential in both cell death and leukocyte activation. Net Co-55 uptake may be the result of cell decay, leukocyte infiltration, (re)perfusion and the pharmacological profile of Co-55. Three patients with primary malignant brain tumours (first presentation) were studied with CT, MRI and Go-PET after the intravenous administration of 0.5 mCi Co-55. Histopathological diagnosis was obtained by biopsy or resection. Go-PET demonstrated each of the brain tumours and showed good topographical agreement with CT and MRI. Go-PET provided additional detail as to the site and size of the necrotic core and the peri-necrotic rim of decaying tumour. The Co-55 uptake indices varied between 2.6 and 5.3. Co-55 demonstrated uptake in decaying tissue, irrespective of the integrity of the blood-brain barrier. Neither necrotic nor viable tumour tissue showed affinity for Co-55. Since Co-55 is readily applicable to both PET and single photon emission tomography (SPET), differences in the uptake mechanism and functional significance of the Co-55 tracer are discussed in relation to Tl-201 SPET. We present a (limited) pilot series of three patients to forward the claim of this new functional technique in nuclear neurology.

    Original languageEnglish
    Pages (from-to)734-740
    Number of pages7
    JournalNuclear Medicine Communications
    Issue number8
    Publication statusPublished - Aug-1997


    • TL-201 SPECT
    • TUMORS
    • GLIOMA
    • CELLS
    • PET
    • RAT

    Cite this