TY - JOUR
T1 - Primary Production, an Index of Climate Change in the Ocean
T2 - Satellite-Based Estimates over Two Decades
AU - Kulk, Gemma
AU - Platt, Trevor
AU - Dingle, James
AU - Jackson, Thomas
AU - Joensson, Bror F.
AU - Bouman, Heather A.
AU - Babin, Marcel
AU - Brewin, Robert J. W.
AU - Doblin, Martina
AU - Estrada, Marta
AU - Figueiras, Francisco G.
AU - Furuya, Ken
AU - Gonzalez-Benitez, Natalia
AU - Gudfinnsson, Hafsteinn G.
AU - Gudmundsson, Kristinn
AU - Huang, Bangqin
AU - Isada, Tomonori
AU - Kovac, Zarko
AU - Lutz, Vivian A.
AU - Maranon, Emilio
AU - Raman, Mini
AU - Richardson, Katherine
AU - Rozema, Patrick D.
AU - van de Poll, Willem H.
AU - Segura, Valeria
AU - Tilstone, Gavin H.
AU - Uitz, Julia
AU - van Dongen-Vogels, Virginie
AU - Yoshikawa, Takashi
AU - Sathyendranath, Shubha
PY - 2020/3/3
Y1 - 2020/3/3
N2 - Primary production by marine phytoplankton is one of the largest fluxes of carbon on our planet. In the past few decades, considerable progress has been made in estimating global primary production at high spatial and temporal scales by combining in situ measurements of primary production with remote-sensing observations of phytoplankton biomass. One of the major challenges in this approach lies in the assignment of the appropriate model parameters that define the photosynthetic response of phytoplankton to the light field. In the present study, a global database of in situ measurements of photosynthesis versus irradiance (P-I) parameters and a 20-year record of climate quality satellite observations were used to assess global primary production and its variability with seasons and locations as well as between years. In addition, the sensitivity of the computed primary production to potential changes in the photosynthetic response of phytoplankton cells under changing environmental conditions was investigated. Global annual primary production varied from 38.8 to 42.1 Gt C yr-1 over the period of 1998-2018. Inter-annual changes in global primary production did not follow a linear trend, and regional differences in the magnitude and direction of change in primary production were observed. Trends in primary production followed directly from changes in chlorophyll-a and were related to changes in the physico-chemical conditions of the water column due to inter-annual and multidecadal climate oscillations. Moreover, the sensitivity analysis in which P-I parameters were adjusted by +/- 1 standard deviation showed the importance of accurately assigning photosynthetic parameters in global and regional calculations of primary production. The assimilation number of the P-I curve showed strong relationships with environmental variables such as temperature and had a practically one-to-one relationship with the magnitude of change in primary production. In the future, such empirical relationships could potentially be used for a more dynamic assignment of photosynthetic rates in the estimation of global primary production. Relationships between the initial slope of the P-I curve and environmental variables were more elusive.
AB - Primary production by marine phytoplankton is one of the largest fluxes of carbon on our planet. In the past few decades, considerable progress has been made in estimating global primary production at high spatial and temporal scales by combining in situ measurements of primary production with remote-sensing observations of phytoplankton biomass. One of the major challenges in this approach lies in the assignment of the appropriate model parameters that define the photosynthetic response of phytoplankton to the light field. In the present study, a global database of in situ measurements of photosynthesis versus irradiance (P-I) parameters and a 20-year record of climate quality satellite observations were used to assess global primary production and its variability with seasons and locations as well as between years. In addition, the sensitivity of the computed primary production to potential changes in the photosynthetic response of phytoplankton cells under changing environmental conditions was investigated. Global annual primary production varied from 38.8 to 42.1 Gt C yr-1 over the period of 1998-2018. Inter-annual changes in global primary production did not follow a linear trend, and regional differences in the magnitude and direction of change in primary production were observed. Trends in primary production followed directly from changes in chlorophyll-a and were related to changes in the physico-chemical conditions of the water column due to inter-annual and multidecadal climate oscillations. Moreover, the sensitivity analysis in which P-I parameters were adjusted by +/- 1 standard deviation showed the importance of accurately assigning photosynthetic parameters in global and regional calculations of primary production. The assimilation number of the P-I curve showed strong relationships with environmental variables such as temperature and had a practically one-to-one relationship with the magnitude of change in primary production. In the future, such empirical relationships could potentially be used for a more dynamic assignment of photosynthetic rates in the estimation of global primary production. Relationships between the initial slope of the P-I curve and environmental variables were more elusive.
KW - primary production
KW - phytoplankton
KW - photosynthesis
KW - ocean-colour remote-sensing
KW - climate change
KW - MARINE PRIMARY PRODUCTION
KW - SUB-ARCTIC PACIFIC
KW - PHOTOSYNTHETIC PARAMETERS
KW - PHYTOPLANKTON PHOTOSYNTHESIS
KW - SPRING PHYTOPLANKTON
KW - NATURAL ASSEMBLAGES
KW - SPECIES COMPOSITION
KW - MANUKAU HARBOR
KW - LIGHT
KW - GROWTH
U2 - 10.3390/rs12050826
DO - 10.3390/rs12050826
M3 - Article
SN - 2072-4292
VL - 12
JO - Remote Sensing
JF - Remote Sensing
IS - 5
M1 - 826
ER -