Primary Production, an Index of Climate Change in the Ocean: Satellite-Based Estimates over Two Decades

Gemma Kulk*, Trevor Platt, James Dingle, Thomas Jackson, Bror F. Joensson, Heather A. Bouman, Marcel Babin, Robert J. W. Brewin, Martina Doblin, Marta Estrada, Francisco G. Figueiras, Ken Furuya, Natalia Gonzalez-Benitez, Hafsteinn G. Gudfinnsson, Kristinn Gudmundsson, Bangqin Huang, Tomonori Isada, Zarko Kovac, Vivian A. Lutz, Emilio MaranonMini Raman, Katherine Richardson, Patrick D. Rozema, Willem H. van de Poll, Valeria Segura, Gavin H. Tilstone, Julia Uitz, Virginie van Dongen-Vogels, Takashi Yoshikawa, Shubha Sathyendranath

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

41 Citations (Scopus)
158 Downloads (Pure)

Abstract

Primary production by marine phytoplankton is one of the largest fluxes of carbon on our planet. In the past few decades, considerable progress has been made in estimating global primary production at high spatial and temporal scales by combining in situ measurements of primary production with remote-sensing observations of phytoplankton biomass. One of the major challenges in this approach lies in the assignment of the appropriate model parameters that define the photosynthetic response of phytoplankton to the light field. In the present study, a global database of in situ measurements of photosynthesis versus irradiance (P-I) parameters and a 20-year record of climate quality satellite observations were used to assess global primary production and its variability with seasons and locations as well as between years. In addition, the sensitivity of the computed primary production to potential changes in the photosynthetic response of phytoplankton cells under changing environmental conditions was investigated. Global annual primary production varied from 38.8 to 42.1 Gt C yr-1 over the period of 1998-2018. Inter-annual changes in global primary production did not follow a linear trend, and regional differences in the magnitude and direction of change in primary production were observed. Trends in primary production followed directly from changes in chlorophyll-a and were related to changes in the physico-chemical conditions of the water column due to inter-annual and multidecadal climate oscillations. Moreover, the sensitivity analysis in which P-I parameters were adjusted by +/- 1 standard deviation showed the importance of accurately assigning photosynthetic parameters in global and regional calculations of primary production. The assimilation number of the P-I curve showed strong relationships with environmental variables such as temperature and had a practically one-to-one relationship with the magnitude of change in primary production. In the future, such empirical relationships could potentially be used for a more dynamic assignment of photosynthetic rates in the estimation of global primary production. Relationships between the initial slope of the P-I curve and environmental variables were more elusive.

Original languageEnglish
Article number826
Number of pages27
JournalRemote Sensing
Volume12
Issue number5
DOIs
Publication statusPublished - 3-Mar-2020

Keywords

  • primary production
  • phytoplankton
  • photosynthesis
  • ocean-colour remote-sensing
  • climate change
  • MARINE PRIMARY PRODUCTION
  • SUB-ARCTIC PACIFIC
  • PHOTOSYNTHETIC PARAMETERS
  • PHYTOPLANKTON PHOTOSYNTHESIS
  • SPRING PHYTOPLANKTON
  • NATURAL ASSEMBLAGES
  • SPECIES COMPOSITION
  • MANUKAU HARBOR
  • LIGHT
  • GROWTH

Cite this