Abstract
Pulmonary hypertension, and consequently right ventricular failure, complicates several congenital heart defects. Although intervention in the prostacyclin-thromboxane ratio is known to improve outcome, the underlying mechanism is not clear. Therefore, effects of acetyl salicylic acid and iloprost are studied in an animal model for flow-associated pulmonary hypertension. Male Wistar rats with flow-associated pulmonary hypertension, an aortocaval shunt in addition to monocrotaline induced pulmonary hypertension, were treated with low-dose aspirin (25 mg/kg/day) or iloprost (72 microg/kg/day). Effects on pulmonary hemodynamics and pulmonary vascular remodeling as well as right ventricular hemodynamics and remodeling were evaluated. Ninety percent (n=7/8) of the untreated pulmonary hypertensive rats developed dyspnea and pleural fluid, whereas this was seen in 50% (n=4/8, ns) and 10% (n=1/8, P<0.05 vs. untreated animals) of the aspirin and iloprost-treated rats, respectively. This could not be attributed to changes in pulmonary artery pressure, wall-lumen ratio of the pulmonary vasculature or right ventricular hypertrophy. However, both therapies restored reduced right ventricular capillary to myocyte ratio in pulmonary hypertensive rats (0.95+/-0.10 in untreated rats vs. 1.38+/-0.18 in control animals; P<0.05, and 1.32+/-0.11 in aspirin-treated and 1.29+/-0.9 in iloprost-treated rats; both P<0.05 vs. non-treated animals), which was associated with improved right ventricular contractility (iloprost). Thus, interventions in the prostacyclin-thromboxane metabolism improve outcome in rats with flow-associated pulmonary hypertension. However, these effects may be attributed to effects on cardiac rather than on pulmonary vascular remodeling.
Original language | English |
---|---|
Pages (from-to) | 107-116 |
Number of pages | 10 |
Journal | European Journal of Pharmacology |
Volume | 549 |
Issue number | 1-3 |
DOIs | |
Publication status | Published - 7-Nov-2006 |
Keywords
- pulmonary circulation
- heart failure
- histopathology
- cyclo-oxygenase
- angiogenesis
- INTRAVENOUS EPOPROSTENOL PROSTACYCLIN
- THROMBOXANE PRODUCTION
- ARTERIAL-HYPERTENSION
- MYOCARDIAL-INFARCTION
- SYNTHASE EXPRESSION
- GROWTH-FACTOR
- RAT-HEART
- IN-VIVO
- INHIBITION
- ASPIRIN