Quantum biology revisited

Jianshu Cao, Richard J. Cogdell, David F. Coker, Hong-Guang Duan, Jurgen Hauer, Ulrich Kleinekathoefer, Thomas L. C. Jansen, Tomas Mancal, R. J. Dwayne Miller*, Jennifer P. Ogilvie, Valentyn Prokhorenko, Thomas Renger, Howe-Siang Tan, Roel Tempelaar, Michael Thorwart, Erling Thyrhaug, Sebastian Westenhoff, Donatas Zigmantas

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

339 Citations (Scopus)
243 Downloads (Pure)

Abstract

Photosynthesis is a highly optimized process from which valuable lessons can be learned about the operating principles in nature. Its primary steps involve energy transport operating near theoretical quantum limits in efficiency. Recently, extensive research was motivated by the hypothesis that nature used quantum coherences to direct energy transfer. This body of work, a cornerstone for the field of quantum biology, rests on the interpretation of small-amplitude oscillations in two-dimensional electronic spectra of photosynthetic complexes. This Review discusses recent work reexamining these claims and demonstrates that interexciton coherences are too short lived to have any functional significance in photosynthetic energy transfer. Instead, the observed long-lived coherences originate from impulsively excited vibrations, generally observed in femtosecond spectroscopy. These efforts, collectively, lead to a more detailed understanding of the quantum aspects of dissipation. Nature, rather than trying to avoid dissipation, exploits it via engineering of exciton-bath interaction to create efficient energy flow.

Original languageEnglish
Article numbereaaz4888
Number of pages11
JournalScience Advances
Volume6
Issue number14
DOIs
Publication statusPublished - 1-Apr-2020

Keywords

  • EXCITATION-ENERGY TRANSFER
  • 2-DIMENSIONAL ELECTRONIC SPECTROSCOPY
  • REDUCED DENSITY-MATRICES
  • MATTHEWS-OLSON COMPLEX
  • FMO ANTENNA PROTEIN
  • TIME EVOLUTION
  • PROSTHECOCHLORIS-AESTUARII
  • SEMICLASSICAL DESCRIPTION
  • EXCITON DELOCALIZATION
  • CHLOROBACULUM-TEPIDUM

Fingerprint

Dive into the research topics of 'Quantum biology revisited'. Together they form a unique fingerprint.

Cite this