Ragworms (Hediste diversicolor) limit eelgrass (Zostera marina) seedling settlement: Implications for seed-based restoration

Clazina Kwakernaak*, Dieuwke J.J. Hoeijmakers, Maarten P.A. Zwarts, Allert I. Bijleveld, Sander Holthuijsen, Dick J. de Jong, Laura L. Govers

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

5 Citations (Scopus)
48 Downloads (Pure)

Abstract

Seagrasses are globally declining and multiple restoration efforts are undertaken to reverse these losses. However, these efforts have proven to be challenging, facing a variety of bottlenecks. We studied how predation by macroinvertebrates may form a potential bottleneck for seed-based seagrass restoration. Specifically, we questioned if the omnivorous common ragworm (Hediste diversicolor) may act as a predator on eelgrass (Zostera marina) seeds and whether that could affect seed-based eelgrass restoration trials. In a controlled lab experiment, we studied (1) how seedling establishment was affected by ragworm biomass (0, 2, 8 g DW m−2), (2) if the absence or presence of an additional or alternative high-protein food source (Sanikoi ® Gold Protein Plus, 52% protein) prevented potential seed predation by ragworms and (3) how ragworm size (small: 0.0029 g and 3.3× bigger: 0.0095 g DW ragworm−1) affected eelgrass seedling establishment. Additionally, we questioned (4) if ragworms may provide a bottleneck for annual eelgrass restoration experiments in the Dutch Wadden Sea by combining data from a large-scale benthic survey (SIBES, Netherlands Institute for Sea Research (NIOZ), Texel) with an existing eelgrass habitat suitability map. We found that >2 g DW m−2 ragworms completely hampered eelgrass seedling establishment, even when fed an additional, protein-rich, food source. Ragworms only seemed to target sprouted seeds rather than intact seeds. Additionally, sprouted seed consumption by ragworms was size-dependent: sprouted seeds escaped predation by smaller ragworms even when present in high biomass (2 g DW m−2). By extrapolating our findings to the field, we showed that 52.8% of the potential eelgrass growth sites in the Dutch Wadden Sea overlap with impeding ragworm biomass (≥2 g DW m−2). By consuming sprouted eelgrass seeds, ragworms may consequently strongly impede seed-based eelgrass restoration efforts, especially since both species have highly overlapping distributions. We thus provided novel insights into an unknown bottleneck for seed-based eelgrass establishment, which may have restoration implications. Especially for annual eelgrass that fully depends on successful seedling establishment for their persistence and survival.

Original languageEnglish
Article number151853
Number of pages9
JournalJournal of Experimental Marine Biology and Ecology
Volume560
DOIs
Publication statusPublished - Mar-2023

Keywords

  • Hediste diversicolor
  • Predation
  • Restoration bottlenecks
  • Seed-based restoration
  • SIBES
  • Zostera marina

Fingerprint

Dive into the research topics of 'Ragworms (Hediste diversicolor) limit eelgrass (Zostera marina) seedling settlement: Implications for seed-based restoration'. Together they form a unique fingerprint.

Cite this