Recommendations for replacing PET on packaging, fiber, and film materials with biobased counterparts

Andreia F. Sousa*, Rafael Patrício, Zoi Terzopoulou, Dimitrios N. Bikiaris, Tobias Stern, Julia Wenger, Katja Loos, Nadia Lotti, Valentina Siracusa, Anna Szymczyk, Sandra Paszkiewicz, Konstantinos S. Triantafyllidis, Alexandra Zamboulis, Marija S. Nikolic, Pavle Spasojevic, Shanmugam Thiyagarajan, Daan S. Van Es, Nathanael Guigo

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

89 Citations (Scopus)
124 Downloads (Pure)

Abstract

This review sheds light on urgent questions that arise from the need to replace a polymer resin,-poly(ethylene terephthalate), which represents 7.7% market-share in the global plastic demand (Plastics-the Facts 2019), by renewable alternatives. The main question that this review will address is: what are the most promising PET replacements made from biomass? Currently, under debate is naturally its biobased counterpart bio-PET (or even recycle rPET), as well as other aromatic key-players with comparable thermo-mechanical performance and enhanced barrier properties, such as poly(ethylene 2,5-furandicarboxylate) (PEF) and poly(trimethylene 2,5-furandicarboxylate) (PTF). They are most adequate for packaging, but not restricted to. Additional alternatives are the miscellaneous of lignin-based thermoplastic polymers, although the technology involved in this latter case is still premature. (Bio)degradable aliphatic polyesters, despite their typical inferior thermo-mechanical properties, can also play a role e.g., among PET fiber industry applications. Poly(lactic acid) (PLA) is the most developed renewable polyester, already a commercial reality. All biobased polymers reviewed face a major hindrance for their wider deployment their cost-competitiveness. A pertinent question arises then: Are these alternatives, or will they be, economically feasible? Social, political and legal frameworks together with supportive financial schemes are boosting rapid changes. In the future, most probably more than one polymer will come to the market and will be used in some of the panoply of PET applications. This evaluation overviews sustainability issues, including perspectives on their green synthesis. Moreover, this review does also not neglect the accumulation of plastics waste in the environment and the inherent challenges of polymers' end-of-life. Approximately 8 M tons of polymers waste leaks into the environment each year, a fact not disconnected to PET's non-biodegradability and still insufficient collection and recycling rates. This journal is

Original languageEnglish
Pages (from-to)8795-8820
Number of pages26
JournalGreen Chemistry
Volume23
Issue number22
DOIs
Publication statusPublished - 21-Nov-2021

Fingerprint

Dive into the research topics of 'Recommendations for replacing PET on packaging, fiber, and film materials with biobased counterparts'. Together they form a unique fingerprint.

Cite this