TY - JOUR
T1 - Reduced vitamin K status as a potentially modifiable risk factor of severe COVID-19
AU - Dofferhoff, Anton S M
AU - Piscaer, Ianthe
AU - Schurgers, Leon J
AU - Visser, Margot P J
AU - van den Ouweland, Jody M W
AU - de Jong, Pim A
AU - Gosens, Reinoud
AU - Hackeng, Tilman M
AU - van Daal, Henny
AU - Lux, Petra
AU - Maassen, Cecile
AU - Karssemeijer, Esther G A
AU - Vermeer, Cees
AU - Wouters, Emiel F M
AU - Kistemaker, Loes E M
AU - Walk, Jona
AU - Janssen, Rob
N1 - © The Author(s) 2020. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: [email protected].
PY - 2021/12
Y1 - 2021/12
N2 - BACKGROUND: Respiratory failure and thromboembolism are frequent in SARS-CoV-2-infected patients. Vitamin K activates both hepatic coagulation factors and extrahepatic endothelial anticoagulant protein S, required for thrombosis prevention. In times of vitamin K insufficiency, hepatic procoagulant factors are preferentially activated over extrahepatic proteins. Vitamin K also activates matrix Gla protein (MGP), which protects against pulmonary and vascular elastic fiber damage. We hypothesized that vitamin K may be implicated in coronavirus disease 2019 (COVID-19), linking pulmonary and thromboembolic disease.METHODS: 135 hospitalized COVID-19 patients were compared with 184 historical controls. Poor outcome was defined as invasive ventilation and/or death. Inactive vitamin K-dependent MGP (dp-ucMGP) and prothrombin (PIVKA-II) were measured, inversely related to extrahepatic and hepatic vitamin K status, respectively. Desmosine was measured to quantify the rate of elastic fiber degradation. Arterial calcification severity was assessed by computed tomography.RESULTS: Dp-ucMGP was elevated in COVID-19 patients compared to controls (p<0.001), with even higher dp-ucMGP in patients with poor outcomes (p<0.001). PIVKA-II was normal in 82.1% of patients. Dp-ucMGP was correlated with desmosine (p<0.001), and coronary artery (p=0.002) and thoracic aortic (p<0.001) calcification scores.CONCLUSIONS: Dp-ucMGP was severely increased in COVID-19 patients, indicating extrahepatic vitamin K insufficiency, which was related to poor outcome while hepatic procoagulant factor II remained unaffected. These data suggest a mechanism of pneumonia-induced extrahepatic vitamin K depletion leading to accelerated elastic fiber damage and thrombosis in severe COVID-19 due to impaired activation of MGP and endothelial protein S, respectively. A clinical trial could assess whether vitamin K administration improves COVID-19 outcomes.
AB - BACKGROUND: Respiratory failure and thromboembolism are frequent in SARS-CoV-2-infected patients. Vitamin K activates both hepatic coagulation factors and extrahepatic endothelial anticoagulant protein S, required for thrombosis prevention. In times of vitamin K insufficiency, hepatic procoagulant factors are preferentially activated over extrahepatic proteins. Vitamin K also activates matrix Gla protein (MGP), which protects against pulmonary and vascular elastic fiber damage. We hypothesized that vitamin K may be implicated in coronavirus disease 2019 (COVID-19), linking pulmonary and thromboembolic disease.METHODS: 135 hospitalized COVID-19 patients were compared with 184 historical controls. Poor outcome was defined as invasive ventilation and/or death. Inactive vitamin K-dependent MGP (dp-ucMGP) and prothrombin (PIVKA-II) were measured, inversely related to extrahepatic and hepatic vitamin K status, respectively. Desmosine was measured to quantify the rate of elastic fiber degradation. Arterial calcification severity was assessed by computed tomography.RESULTS: Dp-ucMGP was elevated in COVID-19 patients compared to controls (p<0.001), with even higher dp-ucMGP in patients with poor outcomes (p<0.001). PIVKA-II was normal in 82.1% of patients. Dp-ucMGP was correlated with desmosine (p<0.001), and coronary artery (p=0.002) and thoracic aortic (p<0.001) calcification scores.CONCLUSIONS: Dp-ucMGP was severely increased in COVID-19 patients, indicating extrahepatic vitamin K insufficiency, which was related to poor outcome while hepatic procoagulant factor II remained unaffected. These data suggest a mechanism of pneumonia-induced extrahepatic vitamin K depletion leading to accelerated elastic fiber damage and thrombosis in severe COVID-19 due to impaired activation of MGP and endothelial protein S, respectively. A clinical trial could assess whether vitamin K administration improves COVID-19 outcomes.
U2 - 10.1093/cid/ciaa1258
DO - 10.1093/cid/ciaa1258
M3 - Article
C2 - 32852539
SN - 1058-4838
VL - 73
SP - e4039–e4046
JO - Clinical Infectious Diseases
JF - Clinical Infectious Diseases
IS - 11
ER -