Abstract
Although bistability of molecular switches in solution is well established, achieving highly robust bistable molecular switching in self-assembled monolayers remains a challenge. Such systems are highly attractive as components in organic electronics and molecular-based photo and electrochromic devices. Here we report a remarkably robust surface confined bisthiaxanthylidene redox switch that shows excellent bistability, manifested in reversible changes in spectroscopic and electrochemical properties and in.. physical properties such as water contact angle changes (ca. 30 degrees difference in water contact angle between the two redox states of a bisthiaxanthylidene self-assembled monolayer). The effect of surface immobilization of bisthiaxanthylidene on its photochromic, thermal and electrochemical properties is described. Surface immobilization is achieved by incorporating thiol- and alkylsiloxy-terminated "legs" on one of the tricyclic aromatic units. The molecular switch in its neutral and dicationic state, generated by bulk electrolysis, was characterized in solution, in the solid state and on surfaces, by UV/vis absorption, Fourier transform infrared, X-ray photoelectron, and Raman spectroscopies and by cyclic voltammetry. In solution, the redox switching to the dicationic state is achieved by oxidation at 1.2 V versus SCE. Reduction of the dication at
Original language | English |
---|---|
Pages (from-to) | 22965-22975 |
Number of pages | 11 |
Journal | The Journal of Physical Chemistry. C: Nanomaterials and Interfaces |
Volume | 115 |
Issue number | 46 |
DOIs | |
Publication status | Published - 24-Nov-2011 |
Keywords
- SUBSTITUTED FLUORENYL CATIONS
- BISTRICYCLIC AROMATIC ENES
- BINDING-ENERGIES
- GOLD SURFACES
- DICATIONS
- ANTIAROMATICITY
- DEVICES
- PARATROPICITY/ANTIAROMATICITY
- STEREOCHEMISTRY
- PHOTOEMISSION