Ring-Opening Polymerization of a New Diester Cyclic Dimer of Mandelic and Glycolic Acid: An Efficient Synthesis Method for Derivatives of Amorphous Polyglycolide with High T

Hajime Nakajima, Katja Loos, Shinobu Ishizu, Yoshiharu Kimura

Research output: Contribution to journalArticleAcademicpeer-review

5 Citations (Scopus)

Abstract

In this study, poly(mandelate-co-glycolate) (PMG), a modified polyglycolide (PGL), is prepared by ring-opening polymerization (ROP) of L-3-phenyl-1,4-dioxane-2,5-dione (PDD); the cyclic dimer of biobased mandelic acid and glycolic acid. The resulting polymer shows an increased glass transition temperature (Tg ) due to the incorporation of phenyl groups in the chain. High molecular weight PMG is obtained by bulk ROP at 150 °C, and it exhibits a glassy amorphous state with enhanced thermal properties such as a Tg being 35 °C higher than conventional PGL. PDD is also copolymerized with glycolide (GL) and lactide (LA), resulting in poly(mandelate-co-glycolate/glycolate) ((P(MG/GL)) with GL and poly(mandelate-co-glycolate/lactide) ((P(MG/LA)) with LA. The thermal properties of P(MG/GL) and P(MG/LA) are found to be distinctly different from PMG and conventional PGL and polylactide, and they are tunable with a changing molar ratio of PDD, GL, and LA. Therefore, PDD opens an elegant way to control and tailor the properties of biobased polyesters.

Original languageEnglish
Article number1700865
JournalMacromolecular Rapid Communications
Volume39
Issue number12
Early online date2018
DOIs
Publication statusPublished - Jun-2018

Cite this