Running-wheel activity delays mitochondrial respiratory flux decline in aging mouse muscle via a post-transcriptional mechanism

Sarah Stolle, Jolita Ciapaite, Aaffien C Reijne, Alzbeta Talarovicova, Justina C Wolters, Raúl Aguirre-Gamboa, Pieter van der Vlies, Kim de Lange, Pieter B Neerincx, Gerben van der Vries, Patrick Deelen, Morris A Swertz, Yang Li, Rainer Bischoff, Hjalmar P Permentier, Peter L Horvatovitch, Albert K Groen, Gertjan van Dijk, Dirk-Jan Reijngoud, Barbara M Bakker

Research output: Contribution to journalArticleAcademicpeer-review

27 Citations (Scopus)
407 Downloads (Pure)

Abstract

Loss of mitochondrial respiratory flux is a hallmark of skeletal muscle aging, contributing to a progressive decline of muscle strength. Endurance exercise alleviates the decrease in respiratory flux, both in humans and in rodents. Here, we dissect the underlying mechanism of mitochondrial flux decline by integrated analysis of the molecular network. Mice were given a lifelong adlibitum low-fat or high-fat sucrose diet and were further divided into sedentary and running-wheel groups. At 6, 12, 18 and 24months, muscle weight, triglyceride content and mitochondrial respiratory flux were analysed. Subsequently, transcriptome was measured by RNA-Seq and proteome by targeted LC-MS/MS analysis with C-13-labelled standards. In the sedentary groups, mitochondrial respiratory flux declined with age. Voluntary running protected the mitochondrial respiratory flux until 18months of age. Beyond this time point, all groups converged. Regulation Analysis of flux, proteome and transcriptome showed that the decline of flux was equally regulated at the proteomic and at the metabolic level, while regulation at the transcriptional level was marginal. Proteomic regulation was most prominent at the beginning and at the end of the pathway, namely at the pyruvate dehydrogenase complex and at the synthesis and transport of ATP. Further proteomic regulation was scattered across the entire pathway, revealing an effective multisite regulation. Finally, reactions regulated at the protein level were highly overlapping between the four experimental groups, suggesting a common, post-transcriptional mechanism of muscle aging.

Original languageEnglish
Article number12700
Number of pages11
JournalAging Cell
Volume17
Issue number1
Early online date9-Nov-2017
DOIs
Publication statusPublished - Feb-2018

Keywords

  • integrative data analysis
  • metabolism
  • mitochondrial function
  • Regulation Analysis
  • skeletal muscle aging
  • targeted proteomics
  • AGED SKELETAL-MUSCLE
  • OXIDATIVE CAPACITY
  • EXERCISE
  • MICE
  • PROTEOME
  • MODULATION
  • SARCOPENIA
  • HEALTH
  • IMPACT
  • PGC-1-ALPHA

Fingerprint

Dive into the research topics of 'Running-wheel activity delays mitochondrial respiratory flux decline in aging mouse muscle via a post-transcriptional mechanism'. Together they form a unique fingerprint.

Cite this