Sex Hormones and Risk of Aneurysmal Subarachnoid Hemorrhage: A Mendelian Randomization Study

ISGC Intracranial Aneurysm Working Group, Rob Molenberg, Chris H L Thio, Marlien W Aalbers, Maarten Uyttenboogaart, Susanna C Larsson, Mark K Bakker, Ynte M Ruigrok, Harold Snieder, J Marc C van Dijk*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

28 Citations (Scopus)
66 Downloads (Pure)

Abstract

BACKGROUND: The risk of aneurysmal subarachnoid hemorrhage (aSAH) is increased in postmenopausal women compared with men of similar age, suggesting a role for sex hormones. We aimed to explore whether sex hormones, and age at menarche/menopause have a causal effect on aSAH risk by conducting a 2-sample MR study (Mendelian randomization).

METHODS: We obtained sex-specific genetic instruments for serum estradiol, bioavailable testosterone (BioT), SHBG (sex hormone-binding globulin), and age at menarche/menopause from genome-wide association studies. The associated sex-specific aSAH risk was estimated with inverse-variance weighted MR analyses with various statistical sensitivity analyses. Multivariable and cluster MR analyses were performed for BioT and SHBG to account for a genetic and phenotypic correlation between the 2 exposures. The clusters represented (1) single-nucleotide polymorphisms primarily increasing SHBG, with secondary decreasing effects on BioT, and (2) single-nucleotide polymorphisms affecting BioT without affecting SHBG.

RESULTS: Univariable MR analyses showed an 18% increased aSAH risk among women per 1-SD increase in genetically determined SHBG levels (odds ratio, 1.18 [95% CI, 1.05-1.34]; P=0.007). Suggestive evidence was identified for a 27% decreased risk of aSAH among women per 1-SD increase in BioT (odds ratio, 0.73 [95% CI, 0.55-0.95]; P=0.02). The latter association disappeared in cluster analysis when only using SHBG-independent variants. MR analyses with variants from the cluster with primary SHBG effects and secondary (opposite) BioT-effects yielded a statistically significant association (odds ratio, 1.21 [95% CI, 1.05-1.40]; P=0.008). No other causal associations were identified.

CONCLUSIONS: Genetic predisposition to elevated serum levels of SHBG, with secondary lower serum BioT levels, is associated with an increased aSAH risk among women, suggesting that SHBG and BioT causally elevate aSAH risk. Further studies are required to elucidate the underlying mechanisms and their potential as an interventional target to lower aSAH incidence.

Original languageEnglish
Article number101161STROKEAHA121038035
Number of pages6
JournalStroke
Volume53
Issue number9
Early online date2-Jun-2022
DOIs
Publication statusPublished - Sept-2022

Keywords

  • hormones
  • menopause
  • sex hormone-binding globulin
  • subarachnoid hemorrhage
  • testosterone
  • BINDING GLOBULIN
  • GENETIC-VARIANTS
  • CAUSAL
  • ESTRADIOL
  • INSTRUMENTS
  • WOMEN
  • BIAS
  • MEN

Fingerprint

Dive into the research topics of 'Sex Hormones and Risk of Aneurysmal Subarachnoid Hemorrhage: A Mendelian Randomization Study'. Together they form a unique fingerprint.

Cite this