Shock-induced stress induces loss of microvascular endothelial Tie2 in the kidney which is not associated with reduced glomerular barrier function

Matijs van Meurs, Neng F. Kurniati, Francis M. Wulfert, Sigridur A. Asgeirsdottir, Inge A. de Graaf, Simon C. Satchell, Peter W. Mathieson, Rianne M. Jongman, Philipp Kuempers, Jan G. Zijlstra, Peter Heeringa, Grietje Molema*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

50 Citations (Scopus)

Abstract

van Meurs M, Kurniati NF, Wulfert FM, Asgeirsdottir SA, de Graaf IA, Satchell SC, Mathieson PW, Jongman RM, Kumpers P, Zijlstra JG, Heeringa P, Molema G. Shock-induced stress induces loss of microvascular endothelial Tie2 in the kidney which is not associated with reduced glomerular barrier function. Am J Physiol Renal Physiol 297: F272-F281, 2009. First published June 10, 2009; doi:10.1152/ajprenal.00137.2009.-Both hemorrhagic shock and endotoxemia induce a pronounced vascular activation in the kidney which coincides with albuminuria and glomerular barrier dysfunction. We hypothesized that changes in Tie2, a vascular restricted receptor tyrosine kinase shown to control microvascular integrity and endothelial inflammation, underlie this loss of glomerular barrier function. In healthy murine and human kidney, Tie2 is heterogeneously expressed in all microvascular beds, although to different extents. In mice subjected to hemorrhagic and septic shock, Tie2 mRNA and protein were rapidly, and temporarily, lost from the renal microvasculature, and normalized within 24 h after initiation of the shock insult. The loss of Tie2 protein could not be attributed to shedding as both in mice and healthy volunteers subjected to endotoxemia, sTie2 levels in the systemic circulation did not change. In an attempt to identify the molecular control of Tie2, we activated glomerular endothelial cell cultures and human kidney slices in vitro with LPS or TNF-alpha, but did not observe a change in Tie2 mRNA levels. In parallel to the loss of Tie2 in vivo, an overt influx of neutrophils in the glomerular compartment, which coincided with proteinuria, was seen. As neutrophil-endothelial cell interactions may play a role in endothelial adaptation to shock, and these effects cannot be mimicked in vitro, we depleted neutrophils before shock induction. While this neutrophil depletion abolished proteinuria, Tie2 was not rescued, implying that Tie2 may not be a major factor controlling maintenance of the glomerular filtration barrier in this model.

Original languageEnglish
Pages (from-to)F272-F281
Number of pages10
JournalAmerican journal of physiology-Renal physiology
Volume297
Issue number2
DOIs
Publication statusPublished - Aug-2009

Keywords

  • endothelium
  • hemorrhagic shock
  • endotoxemia
  • neutrophil
  • ACUTE-RENAL-FAILURE
  • GROWTH-FACTOR
  • HEMORRHAGIC-SHOCK
  • SOLUBLE TIE2
  • ANGIOPOIETIN-2
  • ENDOTOXIN
  • RECEPTOR
  • INFLAMMATION
  • EXPRESSION
  • CELLS

Cite this