TY - JOUR
T1 - Singlet Fission Rate
T2 - Optimized Packing of a Molecular Pair. Ethylene as a Model
AU - Zaykov, Alexandr
AU - Felkel, Petr
AU - Buchanan, Eric A.
AU - Jovanovic, Milena
AU - Havenith, Remco W. A.
AU - Kathir, R. K.
AU - Broer, Ria
AU - Havlas, Zdenek
AU - Michl, Josef
PY - 2019/11/6
Y1 - 2019/11/6
N2 - A procedure is described for unbiased identification of all pi-electron chromophore pair geometry choices that locally maximize the rate of conversion of a singlet exciton into a singlet biexciton (triplet pair), using a simplified version of the diabatic frontier orbital model of singlet fission (SF). The resulting approximate optimal geometries provide insight and are expected to represent useful starting points for searches by more advanced methods. The general procedure is illustrated on a pair of ethylenes as the simplest model of a pi-electron system, but it is applicable to pairs of much larger molecules, with dozens of non-hydrogen atoms, and not necessarily planar. We first examine the value of vertical bar T-A vertical bar(2), the square of the electronic matrix element for SF with initial excitation fully localized on partner A, on a grid of several billion geometries within the six-dimensional space of physically realizable possibilities. Several of the optimized pair geometries are somewhat unexpected, but all are found to follow the qualitative guidance proposed earlier. In the neighborhood of each local maximum of vertical bar T-A vertical bar(2), consideration of mixing with charge-transfer configurations and of excitonic interaction between partners A and B determines the SF energy balance and yields squared matrix elements vertical bar T*vertical bar(2) and vertical bar T**vertical bar(2) for the lower and upper excitonic states S* and S**, respectively. Assuming Boltzmann populations of these states, the geometry is further optimized to maximize k, the sum of the SF rates obtained from Marcus theory, and this reorders the suitable geometries substantially. At 87 pair geometries, the vertical bar T*vertical bar(2) and vertical bar T**vertical bar(2) values are compared with those obtained from high-level ab initio nonorthogonal configuration interaction calculations and found to follow the same trend. Finally, the biexciton binding energy at the optimized geometries is calculated. Altogether, 13 significant local maxima of SF rate for a pair of ethylenes are identified in the physically relevant part of space that avoids molecular interpenetration in the hard-sphere approximation. The three best geometries are twist-stacked, slip-stacked, and L-shaped. The maxima occur at the (five dimensional) surfaces of seven six-dimensional "parent" regions of space centered at physically inaccessible geometries at which the calculated SF rate is very large but the two ethylenes interpenetrate. The results are displayed in interactive graphics. The computer code ("Simple") written for these calculations is flexible in that it permits a choice of performing the search for local maxima in six dimensions on vertical bar T-A vertical bar(2), vertical bar T*vertical bar(2), or k.
AB - A procedure is described for unbiased identification of all pi-electron chromophore pair geometry choices that locally maximize the rate of conversion of a singlet exciton into a singlet biexciton (triplet pair), using a simplified version of the diabatic frontier orbital model of singlet fission (SF). The resulting approximate optimal geometries provide insight and are expected to represent useful starting points for searches by more advanced methods. The general procedure is illustrated on a pair of ethylenes as the simplest model of a pi-electron system, but it is applicable to pairs of much larger molecules, with dozens of non-hydrogen atoms, and not necessarily planar. We first examine the value of vertical bar T-A vertical bar(2), the square of the electronic matrix element for SF with initial excitation fully localized on partner A, on a grid of several billion geometries within the six-dimensional space of physically realizable possibilities. Several of the optimized pair geometries are somewhat unexpected, but all are found to follow the qualitative guidance proposed earlier. In the neighborhood of each local maximum of vertical bar T-A vertical bar(2), consideration of mixing with charge-transfer configurations and of excitonic interaction between partners A and B determines the SF energy balance and yields squared matrix elements vertical bar T*vertical bar(2) and vertical bar T**vertical bar(2) for the lower and upper excitonic states S* and S**, respectively. Assuming Boltzmann populations of these states, the geometry is further optimized to maximize k, the sum of the SF rates obtained from Marcus theory, and this reorders the suitable geometries substantially. At 87 pair geometries, the vertical bar T*vertical bar(2) and vertical bar T**vertical bar(2) values are compared with those obtained from high-level ab initio nonorthogonal configuration interaction calculations and found to follow the same trend. Finally, the biexciton binding energy at the optimized geometries is calculated. Altogether, 13 significant local maxima of SF rate for a pair of ethylenes are identified in the physically relevant part of space that avoids molecular interpenetration in the hard-sphere approximation. The three best geometries are twist-stacked, slip-stacked, and L-shaped. The maxima occur at the (five dimensional) surfaces of seven six-dimensional "parent" regions of space centered at physically inaccessible geometries at which the calculated SF rate is very large but the two ethylenes interpenetrate. The results are displayed in interactive graphics. The computer code ("Simple") written for these calculations is flexible in that it permits a choice of performing the search for local maxima in six dimensions on vertical bar T-A vertical bar(2), vertical bar T*vertical bar(2), or k.
KW - EXCITON FISSION
KW - CHARGE-TRANSFER
KW - ELECTRONIC-STRUCTURE
KW - EXCIMER FORMATION
KW - THIN-FILM
KW - CHARACTER
KW - DYNAMICS
KW - CRYSTAL
KW - DESIGN
KW - STATES
U2 - 10.1021/jacs.9b08173
DO - 10.1021/jacs.9b08173
M3 - Article
SN - 0002-7863
VL - 141
SP - 17729
EP - 17743
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 44
ER -