Spatial Correlations Drive Long-Range Transport and Trapping of Excitons in Single H‑Aggregates: Experiment and Theory

Alberto Carta*, Bernd Wittmann, Klaus Kreger, Hans-Werner Schmidt, Thomas L. C. Jansen*, Richard Hildner*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

1 Citation (Scopus)
22 Downloads (Pure)

Abstract

Describinglong-rangeenergytransportis a crucialstep, both towarddeepeningour knowledgeon naturallight-harvestingsystemsand towarddevelopingnovel photoactivematerials.Here, we combineexperimentand theoryto resolveand reproduceenergytransporton pico- to nanosecondtime scalesin singleH-typesupramolecularnanofibersbasedoncarbonyl-bridgedtriarylamines(CBT).Each nanofibershowsenergytransportdynamicsoverlong distancesup to∼1μm, despiteexcitontrappingat specificpositionsalong the nanofibers.Usinga minimalFrenkelexcitonmodelincludingdisorder,we demonstratethat spatialcorrelationsin the normallydistributedsite energiesare crucialto reproducethe experimentaldata. In particular,we can observethe long-rangeand subdiffusivenatureof the excitondynamicsas well as the trappingbehaviorof excitonsin specificlocationsof the nanofiber.Thistrappingbehaviorintroducesa net directionalityor asymmetryin the excitondynamicsasobservedexperimentally.
Original languageEnglish
Pages (from-to)2697-2707
Number of pages11
JournalThe Journal of Physical Chemistry Letters
Volume15
DOIs
Publication statusPublished - 14-Mar-2024

Keywords

  • SUPRAMOLECULAR ARCHITECTURES
  • Energy transport
  • quantum chemical calculations
  • OPTICAL SPECTROSCOPY
  • OPTICAL MICROSCOPY

Fingerprint

Dive into the research topics of 'Spatial Correlations Drive Long-Range Transport and Trapping of Excitons in Single H‑Aggregates: Experiment and Theory'. Together they form a unique fingerprint.

Cite this