Strategy for Engineering High Photolysis Efficiency of Photocleavable Protecting Groups through Cation Stabilization

Albert M. Schulte, Georgios Alachouzos*, Wiktor Szymański, Ben L. Feringa

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

38 Citations (Scopus)
157 Downloads (Pure)

Abstract

Photolabile protecting groups (PPGs) enable the precise activation of molecular function with light in many research areas, such as photopharmacology, where remote spatiotemporal control over the release of a molecule is needed. The design and application of PPGs in recent years have particularly focused on the development of molecules with high molar absorptivity at long irradiation wavelengths. However, a crucial parameter, which is pivotal to the efficiency of uncaging and which has until now proven highly challenging to improve, is the photolysis quantum yield (QY). Here, we describe a novel and general approach to greatly increase the photolysis QY of heterolytic PPGs through stabilization of an intermediate chromophore cation. When applied to coumarin PPGs, our strategy resulted in systems possessing an up to a 35-fold increase in QY and a convenient fluorescent readout during their uncaging, all while requiring the same number of synthetic steps for their preparation as the usual coumarin systems. We demonstrate that the same QY engineering strategy applies to different photolysis payloads and even different classes of PPGs. Furthermore, analysis of the DFT-calculated energy barriers in the first singlet excited state reveals valuable insights into the important factors that determine photolysis efficiency. The strategy reported herein will enable the development of efficient PPGs tailored for many applications.

Original languageEnglish
Pages (from-to)12421-12430
Number of pages10
JournalJournal of the American Chemical Society
Volume144
Issue number27
DOIs
Publication statusPublished - 13-Jul-2022

Fingerprint

Dive into the research topics of 'Strategy for Engineering High Photolysis Efficiency of Photocleavable Protecting Groups through Cation Stabilization'. Together they form a unique fingerprint.

Cite this