Study of J/psi -> eta phi pi(+)pi(-) at BESIII

M. Ablikim*, M. N. Achasov, X. C. Ai, O. Albayrak, M. Albrecht, D. J. Ambrose, A. Amoroso, F. F. An, Q. An, J. Z. Bai, R. Baldini Ferroli, Y. Ban, D. W. Bennett, J. V. Bennett, M. Bertani, D. Bettoni, J. M. Bian, F. Bianchi, E. Boger, O. BondarenkoI. Boyko, R. A. Briere, H. Cai, X. Cai, O. Cakir, A. Calcaterra, G. F. Cao, S. A. Cetin, J. F. Chang, G. Chelkov, G. Chen, H. S. Chen, H. Y. Chen, J. C. Chen, M. L. Chen, S. J. Chen, X. Chen, X. R. Chen, Y. B. Chen, H. P. Cheng, X. K. Chu, G. Cibinetto, D. Cronin-Hennessy, H. L. Dai, Z. Haddadi, N. Kalantar-Nayestanaki, M. Kavatsyuk, H. Loehner, J. G. Messchendorp, M. Tiemens, BESIII Collaboration

*Corresponding author for this work

    Research output: Contribution to journalArticleAcademicpeer-review

    65 Citations (Scopus)
    50 Downloads (Pure)

    Abstract

    invariant mass spectrum of phi f(0)(980) with a statistical significance of greater than 10 sigma. The corresponding mass and width are determined to be M = 2200 +/- 6(stat) +/- 5(syst) MeV/c(2) and Gamma = 104 +/- 15(stat) +/- 15(syst) MeV, respectively, and the product branching fraction is measured to be B(J/psi ->eta Y(2175), Y(2175)->phi f(0)(980), f(0)(980)->pi(+)pi(-)) = (1.20 +/- 0.14(stat)+/- 0.37(syst))x10(-4). The results are consistent within errors with those of previous experiments. We also measure the branching fraction of J/psi ->phi f(1)(1285) with f(1)(1285)->eta pi(+)pi(-) and set upper limits on the branching fractions for J/psi ->phi eta(1405)/phi X(1835)/phi X(1870) with eta(1405)/X(1835)/X(1870)->eta pi(+)pi(-) at the 90% confidence level.

    Original languageEnglish
    Article number052017
    Number of pages11
    JournalPhysical Review D
    Volume91
    Issue number5
    DOIs
    Publication statusPublished - 20-Mar-2015

    Keywords

    • RESONANCES
    • STATE
    • COLLISIONS
    • THRESHOLD
    • GLUEBALL
    • Y(2175)

    Fingerprint

    Dive into the research topics of 'Study of J/psi -> eta phi pi(+)pi(-) at BESIII'. Together they form a unique fingerprint.

    Cite this