TY - JOUR
T1 - Study of the decay D+ → K∗(892)+K0S in D+ → K+K0Sπ0
AU - BESIII Collaboration
AU - Ablikim, M.
AU - Achasov, M.N.
AU - Adlarson, P.
AU - Ahmed, S.
AU - Albrecht, M.
AU - Aliberti, R.
AU - Amoroso, A.
AU - Kalantar-Nayestanaki, Nasser
AU - Kappert, Rosa
AU - Kavatsyuk, Myroslav
AU - Messchendorp, Johan
AU - Rodin, Viktor
PY - 2021/7/1
Y1 - 2021/7/1
N2 - Based on an e+e− collision data sample corresponding to an integrated luminosity of 2.93 fb−1 collected with the BESIII detector at √s=3.773 GeV, the first amplitude analysis of the singly Cabibbo-suppressed decay D+→K+K0Sπ0 is performed. From the amplitude analysis, the K∗(892)+K0S component is found to be dominant with a fraction of (57.1±2.6±4.2)%, where the first uncertainty is statistical and the second systematic. In combination with the absolute branching fraction B(D+→K+K0Sπ0) measured by BESIII, we obtain B(D+→K∗(892)+K0S)=(8.69±0.40±0.64±0.51)×10−3, where the third uncertainty is due to the branching fraction B(D+→K+K0Sπ0). The precision of this result is significantly improved compared to the previous measurement. This result also differs from most of theoretical predictions by about 4σ, which may help to improve the understanding of the dynamics behind.
AB - Based on an e+e− collision data sample corresponding to an integrated luminosity of 2.93 fb−1 collected with the BESIII detector at √s=3.773 GeV, the first amplitude analysis of the singly Cabibbo-suppressed decay D+→K+K0Sπ0 is performed. From the amplitude analysis, the K∗(892)+K0S component is found to be dominant with a fraction of (57.1±2.6±4.2)%, where the first uncertainty is statistical and the second systematic. In combination with the absolute branching fraction B(D+→K+K0Sπ0) measured by BESIII, we obtain B(D+→K∗(892)+K0S)=(8.69±0.40±0.64±0.51)×10−3, where the third uncertainty is due to the branching fraction B(D+→K+K0Sπ0). The precision of this result is significantly improved compared to the previous measurement. This result also differs from most of theoretical predictions by about 4σ, which may help to improve the understanding of the dynamics behind.
U2 - 10.1103/PhysRevD.104.012006
DO - 10.1103/PhysRevD.104.012006
M3 - Article
SN - 1550-7998
VL - 104
JO - Physical Review D
JF - Physical Review D
IS - 1
M1 - 012006
ER -