Symmetry regimes for circular photocurrents in monolayer MoSe2

Jorge Quereda, Talieh S. Ghiasi, Jhih-Shih You, Jeroen van den Brink, Bart J. van Wees, Caspar H. van der Wal

Research output: Contribution to journalArticleAcademicpeer-review

60 Citations (Scopus)
441 Downloads (Pure)

Abstract

In monolayer transition metal dichalcogenides helicity-dependent charge and spin photocurrents can emerge, even without applying any electrical bias, due to circular photogalvanic and photon drag effects. Exploiting such circular photocurrents (CPC) in devices, however, requires better understanding of their behavior and physical origin. Here, we present symmetry, spectral, and electrical characteristics of CPC from excitonic interband transitions in a MoSe2 monolayer. The dependence on bias and gate voltages reveals two different CPC contributions, dominant at different voltages and with different dependence on illumination wavelength and incidence angles. We theoretically analyze symmetry requirements for effects that can yield CPC and compare these with the observed angular dependence and symmetries that occur for our device geometry. This reveals that the observed CPC effects require a reduced device symmetry, and that effects due to Berry curvature of the electronic states do not give a significant contribution.
Original languageEnglish
Article number3346
Number of pages8
JournalNature Communications
Volume9
DOIs
Publication statusPublished - 21-Aug-2018

Keywords

  • cond-mat.mtrl-sci
  • SPECTROSCOPY

Fingerprint

Dive into the research topics of 'Symmetry regimes for circular photocurrents in monolayer MoSe2'. Together they form a unique fingerprint.

Cite this