Abstract
BACKGROUND: Language anomalies are a hallmark feature of schizophrenia-spectrum disorders (SSD). Here, we used network analysis to examine possible differences in syntactic relations between patients with SSD and healthy controls. Moreover, we assessed their relationship with sociodemographic factors, psychotic symptoms, and cognitive functioning, and we evaluated whether the quantification of syntactic network measures has diagnostic value. STUDY DESIGN: Using a semi-structured interview, we collected speech samples from 63 patients with SSD and 63 controls. Per sentence, a syntactic representation (ie, parse tree) was obtained and used as input for network analysis. The resulting syntactic networks were analyzed for 11 local and global network measures, which were compared between groups using multivariate analysis of covariance, considering the effects of age, sex, and education. RESULTS: Patients with SSD and controls significantly differed on most syntactic network measures. Sex had a significant effect on syntactic measures, and there was a significant interaction between sex and group, as the anomalies in syntactic relations were most pronounced in women with SSD. Syntactic measures were correlated with negative symptoms (Positive and Negative Syndrome Scale) and cognition (Brief Assessment of Cognition in Schizophrenia). A random forest classifier based on the best set of network features distinguished patients from controls with 74% cross-validated accuracy. CONCLUSIONS: Examining syntactic relations from a network perspective revealed robust differences between patients with SSD and healthy controls, especially in women. Our results support the validity of linguistic network analysis in SSD and have the potential to be used in combination with other automated language measures as a marker for SSD.
Original language | English |
---|---|
Pages (from-to) | S172-S182 |
Number of pages | 11 |
Journal | Schizophrenia Bulletin |
Volume | 49 |
Issue number | 2 |
DOIs | |
Publication status | Published - 22-Mar-2023 |
Keywords
- biomarker
- language
- psychosis
- sex differences
- syntax