TY - JOUR
T1 - Synthesis of a hyperbranched phosphorus-containing polyurethane as char forming agent combined with ammonium polyphosphate for reducing fire hazard of polypropylene
AU - Zhang, T.
AU - Tao, Y.
AU - Zhou, F.
AU - Sheng, H.
AU - Qiu, S.
AU - Ma, C.
AU - Hu, Y.
PY - 2019/7
Y1 - 2019/7
N2 - Due to the inherent flammability of polypropylene (PP), it is limited in the application of flame retardant materials. In this work, a novel char forming agent, hyperbranched phosphorus-containing polyurethane (HPPU), was synthesized and used as efficient char forming agent. When ammonium polyphosphate (APP) was combined with HPPU, APP/HPPU endow PP significantly improved flame retardancy than single APP. Although the total carbon monoxide production (TCOP) of some PP/APP/HPPU composites is higher than that of PP/APP composite, it is still lower than that of neat PP. LOI (limited oxygen index) and UL-94 tests reveal that PP composites with 25 wt% HPPU/APP with ratio of 4:1 are able to reach 27 vol% and V-0 rating, respectively. The addition of 25 wt% APP/HPPU with ratio of 2:1 into PP can result in decrease in peak heat release rate of about 72%, decrease in total heat release of about 38% and decrease in TCOP of about 93%. APP/HPPU promotes PP to form more stable, compact, and continuous char layer which effectively hinder heat and oxygen transfer and protect the inner matrix from decomposition. Thermogravimetric-infrared results reveal that the gas phase flame retardant mechanism of APP/HPPU is the dilution effect of ammonia from APP and the flame inhibition effect of phosphorus-containing species from HPPU.
AB - Due to the inherent flammability of polypropylene (PP), it is limited in the application of flame retardant materials. In this work, a novel char forming agent, hyperbranched phosphorus-containing polyurethane (HPPU), was synthesized and used as efficient char forming agent. When ammonium polyphosphate (APP) was combined with HPPU, APP/HPPU endow PP significantly improved flame retardancy than single APP. Although the total carbon monoxide production (TCOP) of some PP/APP/HPPU composites is higher than that of PP/APP composite, it is still lower than that of neat PP. LOI (limited oxygen index) and UL-94 tests reveal that PP composites with 25 wt% HPPU/APP with ratio of 4:1 are able to reach 27 vol% and V-0 rating, respectively. The addition of 25 wt% APP/HPPU with ratio of 2:1 into PP can result in decrease in peak heat release rate of about 72%, decrease in total heat release of about 38% and decrease in TCOP of about 93%. APP/HPPU promotes PP to form more stable, compact, and continuous char layer which effectively hinder heat and oxygen transfer and protect the inner matrix from decomposition. Thermogravimetric-infrared results reveal that the gas phase flame retardant mechanism of APP/HPPU is the dilution effect of ammonia from APP and the flame inhibition effect of phosphorus-containing species from HPPU.
UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-85066035024&partnerID=MN8TOARS
U2 - 10.1016/j.polymdegradstab.2019.05.003
DO - 10.1016/j.polymdegradstab.2019.05.003
M3 - Article
SN - 0141-3910
VL - 165
SP - 207
EP - 219
JO - Polymer degradation and stability
JF - Polymer degradation and stability
ER -