Abstract
Background. Mitochondrial dysfunction plays an important role in kidney damage in various pathologies, including acute and chronic kidney injury and diabetic nephropathy. In addition to the well-studied ischaemia/reperfusion (I/R) injury, hypothermia/rewarming (H/R) also inflicts acute kidney injury. Substituted 6-hydroxychromanols are a novel class of mitochondrial medicines that ameliorate mitochondrial oxidative stress and protect the mitochondrial network. To identify a novel 6-hydroxychromanol that protects mitochondrial structure and function in the kidney during H/R, we screened multiple compounds in vitro and subsequently assessed the efficacy of the 6-hydroxychromanol derivatives SUL-109 and SUL-121 in vivo to protect against kidney injury after H/R in rats.
Methods. Human proximal tubule cell viability was assessed following exposure to H/R for 48/4 h in the presence of various 6-hydroxychromanols. Selected compounds (SUL-109, SUL-121) or vehicle were administered to ketamine-anaesthetized male Wistar rats (IV 135 mu g/kg/h) undergoing H/R at 15 degrees C for 3 h followed by rewarming and normothermia for 1 h. Metabolic parameters and body temperature were measured throughout. In addition, renal function, renal injury, histopathology and mitochondrial fitness were assessed.
Results. H/R injury in vitro lowered cell viability by 94 +/- 61%, which was counteracted dose-dependently by multiple 6-hydroxy-chomanols derivatives. In vivo, H/R in rats showed kidney injury molecule 1 expression in the kidney and tubular dilation, accompanied by double-strand DNA breaks and protein nitrosylation. SUL-109 and SUL-121 ameliorated tubular kidney damage, preserved mitochondrial mass and maintained cortical adenosine 50-triphosphate (ATP) levels, although SUL-121 did not reduce protein nitrosylation.
Conclusions. The substituted 6-hydroxychromanols SUL-109 and SUL-121 ameliorate kidney injury during in vivo H/R by preserving mitochondrial mass, function and ATP levels. In addition, both 6-hydroxychromanols limit DNA damage, but only SUL-109 also prevented protein nitrosylation in tubular cells. Therefore SUL-109 offers a promising therapeutic strategy to preserve kidney mitochondrial function.
Original language | English |
---|---|
Pages (from-to) | 2128-2138 |
Number of pages | 11 |
Journal | Nephrology, Dialysis, Transplantation |
Volume | 33 |
Issue number | 12 |
Early online date | 11-Apr-2018 |
DOIs | |
Publication status | Published - Dec-2018 |
Keywords
- 6-hydroxychromanol
- hypothermia/rewarming
- mitochondria
- renal injury
- tubular cells
- ISCHEMIA-REPERFUSION INJURY
- ACUTE KIDNEY INJURY
- MITOCHONDRIAL-FUNCTION
- ALPHA-TOCOPHEROL
- TUBULAR CELLS
- MECHANISMS
- ANTIOXIDANTS
- DYSFUNCTION
- PREVENTION
- MEMBRANES